XMetalL 19
Developer

Customization Guide

2024 JustSystems Canada Inc.

JUST.

SYSTEMS

About JustSystems

JustSystems is a leading global software provider with three decades
of successful innovation in office productivity, information management,
and consumer and enterprise software. With over 2,500 customers
worldwide and annual revenues over $110M, the company is continuing
a global expansion strategy that includes its enterprise software offering
called xfy, its XMetaL content lifecycle solutions, and its pioneering work
in the definition of the XBRL standard and commercialization of enabling
technologies. A Gartner “Cool Vendor” selection in 2008, JustSystems
is also a member of KMWorld’'s 100 Companies that Matter in Knowledge
Management for 2008 and the 2007 EContent 100. XMetaL is a 2008
KMWorld Trend-Setting Product. Major strategic partnerships include
IBM, Oracle and EMC. For more information, please visit
http://www.justsystems.com.

Copyright JustSystems Canada, Inc. All rights reserved. XMetalL is a
registered trademark of JustSystems Canada, Inc. Other product names
may be trademarks or registered trademarks of their respective owners.

Contact Information:

Support:
North America: +1 866 647 2003

Sales:
North America: +1 866 793 1542

Office Locations:

XMetal Sales & Support

Suite 3220

666 Burrard Street

Box 207

Vancouver, BC, Canada

V6C 2X8

T: 604-602-9928

Toll-Free Sales: 1-866-793-1542

Tokushima Head Office
Brains Park Kawauchi-cho

Tokushima-city Tokushima 771-0189

Japan
T: 088 666 1000

(+81 88 666 1000 from outside Japan)

Contents

FaN{foTo 18 Lo} T 0] o F PP PP PPPPPPPPPPP 6
Creating CUSTOMIZATIONS....ccoii i e et s e e e e e e e e e e e e eeeeeaasannaaa 7
21 {0 LT 0 T U T o7 1o TSR 7
L0 4] 0T 1= o1 £ PSP 8
1 L= o] o] 0= (1= TR 9

Visual Studio .NET SOIUtiON EXPIOIEI.......cccieieeieeee ettt e e e e e e e e ee e e 10
1= g Lo oL o] o] 0= o =TSSR 11
(1= o= - | PP PTRR PP PUPRPPRIN 11

L1 g T T g T T 1] SO 12

D 1S o] = PSSR 12
0] [T Y=o I o) USSR 13

L0 0 11T o PR 14

LT =0 | 15

TEEAL AS..eiiiiiiiiii i e 15
(€1 L0] o= LI o] 0] o 1= 1 11T 16
VAT U T L= =T o oo o | PP PTR 17
IN-PArent EIEMENT...... .ot e 17
2011 o T aTo = W o U L3 (] 41 2= 4o] o 1 USRS 18
Configuring the build €NVIFONMENT............uuiiiiiiiee e e e e e e e e e e e e s 18
(D=1 o101 [[TaTo = W o1 U 1S3 (0] 1 414> i o] o P SRR 19
Debugging and testing an XMAX CUSTOMIZAtION...........ccccuviiiiiirieie e e e 20
(10153 (o] a1 14 g BN 1S3 T T O SRR 22
Explicit application-level customization support (without uSing XAC)........cccccverrieiniirnrieeeneee e 22
External event handling iN XIMETALuiiiriiiiiie ettt 26
Y03 1 01 = TP PPPPPPPPP 31
Yol 1] 0 A= [] (o] SO PP PP U PP PPPPPPUPRPTN 32
LT 1] g1 BT g o) £ O PP PP P PP PPRPUPPPRPN 32
(O (= BT g o O PO PUPPRPTOP 33
Tl oTol g (] g o JETol 1] o] £ F O PP PT R OPPPPPP 33
T T oTo] o = NETod 4 o | OO PP P PP PPPOPPPP 33
Import scripts from an MCR file.......euiiii e 34
RS 1 g To I Tod] o T PP O TP PPP PPN 34
TogToTol g] gTo o F=1 v- PP PT R OUPPPPP 34
Converting Microsoft WOord OCUMENTS.ccciiuiiiiiiiiiiiie ettt e e e s sbreee e e 35

XMetalL Developer 19.0 © 2024 JustSystems Canada Inc. iii

Contents

PDF and HTML previewing and Printing.........oooeeeeeeeeiieeae et e e ee e e e e e e e e e e e aneenes 35
DTDS @Nd SCREMES....ciiiiiiiieie ittt e e e e e e e e e e e e e e e e 37
(O{g=T= 1] oo K= U D I 5 2SR 37
1Y/ To o T4 AT o 1R o 18 1 S I I TS SUUPR 38
RUIES fIlES. ..ttt e e s bt e s b e e e st b e e e be e e s b e e e snn e e e anre e e nnree s 38
Document type dECIAratiONS.uuuiiiieiiieeee i e e e e e e e e s s e e e e e e e e e s e e ssaanrrarrereaeaeeessesaannnnes 39
INEEINAL SUDSEL. ... it e b e e e se b e e snn e e e snr e e nnnes 40

1Y/ E= Vo] o Lo TR0 [T 1= £ SREPRR 41
(O 1 7= 1 (oo B 1= SRR 41
Resolving catalog file ENEHES.iii i a e e 42
Catalog suppOort fOor SChEMAS.........c.cuiiiiiiiieiee e e e e e e e s ee e 43
[T To [TaTe Jor=1 =1 oTo I 1TCT P PUERURRR 44
Giving priority to system or public identifiers............cccviiiiiie e 44
External identifier Map fil€........uuiiii i 45
Creating an external identifier Map fil€..........cooiiiiiiiii e 46
=Yg o U F=To [T U] o] oo o RSP PSPPPUPPN 47
SGML ECIATALION.eeeeitet ettt ettt e et e st e s b e e sabe e e s be e e sbee e e anneeeanneeesnneeenns 47
Attribute deSCHIPION filES... ... e r e e e e e e e e e e s 49
O S e 50
XMeEtaL FOIMS TOOIKIL.......veeeiiieeiiiie ettt e et e s e s e e e s e e e nnne e e nnneeees 51
(O (=T 1L B 0] 1 TSP PRRTRUPRR PRSI 53
Binding @ form t0 XML CONENL.........uuiiiiiiiece i e s r e e e e e e s s s s s e e eraeaeeesseannnnnes 54
=T g F= e Fo - VPR PRSP 56
Connect to an external data SOUICE.ccuieeeiiriiee e 57
Associate a form with a customization ObJECL..........ccveeiiii i 58
Executing a form as a modal dialog in XMetaL..........ccuviiieeiiiiiiiiiiiiiiiiir e e e e e e 58
ST= 0] o 1= (0] 8 SRR 59
EdItOr diSPlay STYIES ..ot 60
(O3 SR =To [(o] S OO PP P PPPPPPPPUPPPN 60
CreatiNg SEIECIOIS.teiiie ittt ettt ettt e e ettt e e e sk b e et e e e abb et e e e s aabee e e e s abbeeeeeeaae 61
XMeEtaL-SPECIIC SEIECIONS. ...cei ittt e e s 63
CrEALE A SEIECTION.. ... iiiei ittt e e ekt e e e et e e e e e e e 63
(01011 (0] IS [T (o] £ F O PO P T PUPPRPROP 64
SEtliNG STYIE PrOPEITIES. ...ttt e e sttt e e e sk e et e e e abb et e e e s snbb e e e e e abbeeeeeeaaes 64
EXIENSIONS PrOPEITIES. ..eeeiiiiiiiiiie ettt ettt e s e e e st e e e e s annneeee s 65

View support for properties and SEIECIOIS.ciiiiiiiii e 65
Using counters and autONUIMDEIINGeeieiiiiriie ettt et e e b e e e s ibr e e e e e snnneas 69

Customization Guide

Contents

Formatting elements as tabIES. e e e e e 71
EXAMPIE SLYIE TUIES. ...ttt e e e ettt et e e e e e e e e e s e abnbe e e e e eeaaaeeeeaeaannnenes 72
RESOUICE IMANAGET ittt et e et e e e e e e e e e e et e e e ea e e eena s 73
Configuring the ASSEt IMABNAGET ...t e e e e e s e e e e e e e e e e s s e s b s trerraaeaaeaeeas 73

(O{ =T 1] oo [TS A Y 01T TR 75

ASSEL AISPIAY filE. ... 75

ASSEL CAtAlOg filE. ... a e 76

Text file and text DIOCK ASSEIS........viiiiiiiiiee e 77

Master asset Catalog filE..........uuiriiiiii e a e 77

REMOLE SSEIS......uiiiiiiiiiiiii e et e e 78

Set up a remote asSEts fOIAEN ... ———————— 78
CoNfIQUITNG XMETALuviiiiiiii et s e e e e e e e e e e e e eeeenaannns 80
Yo (o [1aTe I aT=Y VAR (oY1 o =T g To o] o 1S 80
Frequently used configuration variables.............ccuuuiiiiiiiii e 81

(O70] a1 To 8 Tr= a0 g I V= T T= L o] TS SRR 81
(€011 7 | YT T P TTT PO PPPPPPP 90
1 L0 1= PP 96

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. v

Introduction

With XMetaL Developer, you can create custom user environments for XMetalL Author and XMetaL XMAX.
Customizations are created in the Microsoft® Visual Studio .NET development environment.

Creating a customization is a multi-step process. However, the first step requires no development tools at
all. Before beginning any customization you must have a clear definition of the project, including its purpose,

scope, audience, and workflow. Only then is it possible to begin a customization that satisfies your project
plan.

create
customization

L
—

deploy
customization

Feedback

Send comments or questions about XMetaL documentation to docs-feedback@xmetal.com.

XMetalL Developer 19.0 © 2024 JustSystems Canada Inc. 6

mailto:docs-feedback@xmetal.com

Creating customizations

You create and manage the components of your customization in a Visual Studio .NET solution.

You can create a customization solution through the File > New > Project menu. You then choose a solution
template in the XMetalL Projects folder. Follow the wizard to finish creating your customization.

Project Types: Templates:

{1 Visual Basic Projects
i) visual C# Projects !

-0 isual Ct++ Prnjects Document Application
R | IMetal Projscts Customization Cuskarnization
-{_7] Setup and Deployment Projects
{7 other Projects

----- {7 visual Studio Salutions

|Create a new XMetal document-level customization project,

Mame: I My Project

Location: I CHMyProjects j Browse. .. |

Project will be created at Ci\MyProjectsMyProject,

FMore | QK I Zancel | Help |

Before you begin

You need to have a project plan and knowledge of the development environment, XMetal Author, and related
technologies.

Before you start creating a customization you should have a project plan. The objective of the customization
is to achieve the goals set out in your plan. It should reflect the following:

» The tasks you want to perform with your customization
* The order of these tasks
» Dependencies on these tasks

By understanding your project as a series of tasks, you can better design your DTD and determine the scope
of the customization, that is, whether it is an application-level or document-level customization.

In order to work effectively, you also need to have knowledge of the following:

« XML

e DTD or schema

« CSS

o XMetalL Author or XMetaL XMAX
 Visual Studio .NET

XMetalL Developer 19.0 © 2024 JustSystems Canada Inc. 7

Components

Components

A customization solution contains file components that determine the appearance and behavior of elements
and tools in the XMetalL Author or XMetaL XMAX environment. These components are compiled into an
XMetal Application Customization (XAC) file.

Document Type Definitions or schemas

The Document Type Definition (DTD) or schema (XSD) forms the basis of your customization. After you have
planned the workflow, you should create a DTD or schema if you do not already have one. Your DTD or
schema should support your workflow and the types of information you need to create and manage.

Scripts

Scripts provide access to XMetal Author or XMetaL XMAX via an object model that is based on the Document
Object Model (DOM) and the Microsoft Word VBA model. Scripts are stored as components (for example,
JScript files) in your customization. These components are visible through the Solution Explorer. You can
create a new script or import an existing script. Scripts are deployed with your customization.

Settings files

Each installation of XMetalL Author contains a global configuration file and a user configuration file. You can
configure XMetalL Author behavior for your customization through the global configuration file. Configuration
files contain one or more variables that are read when you start XMetalL. Each variable is a name-value pair.
The values can be booleans, pathnames, numbers, and strings.

Customization files

Customization (CTM) files contain the customizations carried out by the XMetaL Customization editor. The
customizations for a DTD called dtdname.dtd are saved in dtdname.ctm. The CTM file must reside in the
same folder as the DTD (or Schema or rules file).

Forms

Forms help end-users to create structured content. You can use the XMetalL Forms Toolkit (XFT) to create

forms that can be run from within XMetaL either as modal dialog boxes or embedded within a document. In
addition, you can create forms that are bound to XML content and apply your organization’s business logic
via scripting.

Document templates

Document templates provide outlines and let you create a new document that uses a specific DTD or rules
file. If you want default content to be entered when an element is selected, you can insert replacement text
in the template. This is similar to a user prompt. A template is used when a new file is created with the File
> New command in XMetalL Author. You should create at least one template for each DTD or rules file.

For more information about creating document templates, see the XMetalL Author User’s Guide.

8 Customization Guide

File properties

Toolbars and menus

Toolbars and menus are created when a new customization project is started. This information is stored in
a toolbar (TBR) file. You can create new toolbars and menus through XMetalL Author while debugging your
customization.

The following components of XMetalL Author are configured based on settings in the toolbar (TBR) file:

 Toolbars (containers for toolbar buttons)
 Toolbar buttons

« Menus (containers for menu items)

* Menu items

XMetaL Author creates toolbars and menus if it opens a customization for which no TBR file is provided.
Modification of toolbars should be handled in XMetaL Author while debugging your customization. To modify
a toolbar or menu, you first create a macro script and save it in the Macros folder for your customization. You
then launch a debugging session and use XMetaL Author to create a new toolbar item (for example, a button)
or menu item.

J Note: If you stop the debugging session from XMetalL Developer, your changes to the toolbars are not

saved.

For more information about creating toolbars and menus, see the XMetalL Author User’s Guide.

Style sheets
When you begin a customization solution that contains no existing style sheets or customization files, XMetalL
Developer parses the DTD or schema and generates the following files:

* CSS for the editor view
* CSS for the structure view
e CTM (customization) file

Styling is based on element names. If the names of your elements differ significantly from commonly used
names, or if they are in a language other than English, XMetal Developer cannot recognize the elements
and cannot assign styles to them. XMetaL Developer recognizes many elements defined in XHTML, DocBook
and the Journalist DTD.

You may need to modify these generated files to obtain the desired appearance or behavior.

File properties
You can specify properties for each component in your customization. Each component has a UseAs property.

UseAs

This property is necessary to communicate to XMetalL Author and XMetaL XMAX the intended purpose of
the item. For example, if you have a file, nyi t em xf t that is to be used as an XFT form, you must set the
UseAs property to be An XFT Form.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 9

Visual Studio .NET Solution Explorer

Table 1: UseAs values

UseAs value

Internal name used by XMetaL
API

Comment

CSS styles file for Structure view

CSS styles file for Normal view

Default CSS styles file

XMetal Macro Script file
Customization file

An XFT Form

Toolbar File

XML DTD

Compiled Rules File from an XML
DTD

SGML DTD

Compiled XMetalL Rules File from
SGML DTD

W3C XML Schema document

Compiled rules file from schema

XMETAL_CSS_STRUCT

XMETAL_CSS_NORMAL
XMETAL_CSS_DEFAULT

XMETAL_MACROS
XMETAL_CUSTOMIZATION
XMETAL_FORM
XMETAL_TOOLBAR
XML_DTD
XMETAL_XML_RULES

SGML_DTD
XMETAL_SGML_RULES

XML_SCHEMA
XMETAL_SCHEMA_RULES

CSS used to add additional formatting to the
styles used for the Structure View.

Not supported

Overrides the CSS file assigned the UseAs
type of CSS styles file for Normal view, even
if one is defined.

MCR file
CTM file
XFT file
TBR file
DTD file

RLX file

DTD file

RLS file

XSD file
RLD

Visual Studio .NET Solution Explorer

10

You can view and manage all items in your customization within the Visual Studio .NET Solution Explorer.
You are advised to use the XMetalL integrated development environment when working with customizations
in order to take full advantage of XMetaL Developer.

You can open a customization through the File menu. After you select a solution, open the Solution Explorer
by clicking View > Solution Explorer.

You can add items to your customization through the Project menu. You can add items as you need to work
on them or all at once. The humber and type of items you can add depends on the scope of your customization.

» For document-level customizations, you can add scripting objects, text files, forms, style sheets, and

customization files.

« For application-level customizations, you can add scripting objects, text files, and forms.

You can add almost any other type of file to your project; however, some items may not be deployed properly
or at all. In the case of DTDs and schemas, it is recommended that you deploy the compiled rules file (RLX
or RLD) instead. This is because external entities are not supported in deployment.

You can modify an item in your customization by selecting it in the Solution Explorer and editing it in the

main view.

You can remove or delete any items from a customization, except for:

Customization Guide

Element properties

» Macros folder
« References folder or any of its contents
* Rules files

You can remove items from one project, add them to another project, or add them back into the existing
project at a later time. You can also completely remove items from the hard disk by deleting them. You can
remove or delete items through the Edit menu.

You can save changes to your customization through the File menu. Customization files must be saved with
one of the following encodings:

* ASCII
* ANSI

* UTF-8
* UTF-16

In most cases, ASCII will be acceptable; however, the coding you select should be the same as that of your
DTD or Schema.

Element properties

Elements in your customization file (CTM) control the behavior and some aspects of the appearance of the
XMetal Author or XMetalL XMAX user environment.

You can set properties for elements in your customization file in the Properties pane. The properties of each
element are displayed in rows in the main view. When you click on a row, the element properties appear in
the Properties pane. You can modify the behavior of XMetal authoring environments by changing properties.

You can set properties on a per-element basis or on a global basis through the #GLOBAL element. You also
have the option of specifying an In-Parent context for an element or a Virtual element.

General

General properties determine basic element characteristics including an alias, if you want to call the element
by a different name, and a description.

Alias

You can enter a real-language name for the selected element in the Alias field. This is useful when the element
name is not very descriptive, or in cases where authors speak a language other than the language of the
DTD. For example, if the element that you want authors to use for main titles is ‘<DT>’, you can use the Name
field to give the element the real-language name ‘Document Title’—or its equivalent in the language of the
authors.

If you do not enter a real-language name for the element, the element name from the DTD is used. This name
is displayed in tags and in the Element List.

Description

You can type a description of the element in the Description text box. If you do not enter a description, the
element name from the DTD is used instead. This text is displayed at the bottom of the Element List.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 11

Change list

Change list

You can specify which elements are available in the change list in XMetaL Author through the Change list
property.
In XMetalL Author, the change list is displayed at the left end of the Formatting toolbar. The list contains the

names of elements that the current element can be changed to. The Change List dialog displays the list of
valid elements.

Since all configurations in this dialog box are relative to a parent element, you may have to re-configure
several parents in order to cover all contexts in which the element can occur. For example, if you have two
list elements, for example, Bul | et ed and Nunber ed, that can occur inside Book, Chapt er, Sect i on, and
Par a, you must include Bul | et ed and Nunber ed in the change list for each parent.

Change List ! |
[w|fnnokation
[Zikakion Select Al |
[|Emphasis
[JInlinedraphic Deselect Al
[Link.
[]5trong
[|Subscript
[|Superscripk

oK Cancel

Display As

12

The Display As properties let you associate forms or controls with an element.

You can specify a form or control by clicking the browse button in the Advanced Display Type property.

XFT Form
You can customize your documents and templates with forms (or dialogs). These are associated with specific
elements to facilitate data entry and the XML authoring process.

You can use the XFT Form Wizard to set up forms that are bound to XML content by an XPath expression.
By using the wizard you can specify the following:

* How to run the form (Embedded or Modal)
« How to display the form (Replace, Before, After)
« When to display the form (Always, Dynamic Script)

If you select Dynamic Script, you must create a script for XMetal to call before it displays the form. Use this
script to create business rules that determine whether or not to display the form at run-time.

Customization Guide

Associate an element with an in-place control

For example, the following script shows how a dynamic display script can be used to conditionally display a
form, depending on the parent of the form node.

/1l Put this script in the Script Text box of the XFT Form W zard
/1 Get the form control

/1 1ts node nenber is the DOVNode of the elenent to be tested
var ai pc = Application.Activel nPl aceControl;

/1 |If the node's parent is "Publisher" ...

i f (ai pc. node. parent Node. nodeNane = "Publisher") {
[l ... then display the form

ai pc. Shoul dCreate = true;

el se {

[l ... otherwise do not display the form
ai pc. Shoul dCreate = fal se;

}

In-Place Control

You can use in-place ActiveX controls to represent elements in Normal and Tags On views and determine
their behavior. When you specify that an element is to be displayed as an in-place control, you must specify
a script prefix. This prefix is used in your macros to enable the control to communicate with XMetaL. You
also have the option of specifying Bitmap Printing. This option has been provided because some controls
(for example, the Internet Explorer WebBrowser Control) do not print using the standard ActiveX mechanism.
If one of your controls does not print using the default mechanism, you should enable this option.

Refer to the documentation for the ActiveX control to learn about possible limitations and restrictions associated
with the control.

Associate an element with an in-place control
You can use in-place ActiveX controls to represent elements in Normal and Tags On views.

1. In the Advanced Display Type property, select the In-place Control option.
2. Inthe ProgID/CIsID text box, type the identifier for the control you want to use.

J Note: If the control you want to use does not appear in the list, you can find its ClsID or ProgID by

consulting the control documentation for the control or by searching the registry (advanced users
only).

Type a script prefix.

Set the Use Bitmap Printing option.

Click OK.

Create the macros that enable the control to communicate with XMetalL.

o ok w

Followed by

You can configure XMetalL to create an element of your choice when Enter is pressed at the end of a particular
element.

By default, if you press Enter inside a specific block element, XMetalL Author creates a new element of the
same type, if the DTD or schema allows it. You can change the default behavior if it is not permitted by the
DTD or schema, or if you want a different element to be created. The original element must be defined as a
block element in the CSS style sheet for the document.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 13

On Insert

On Insert

14

The On Insert properties let you specify default content or a script to be run whenever you insert a particular
element.

You can choose the following from the On Insert Type dropdown:

* None. No content or script is to be inserted.
« XML content. Lets you specify a mini template.
» Script. Lets you specify script and script language.

MiniTemplate

The MiniTemplate property contains the default content for the selected element. You can use this property
to indicate the markup that is to be inserted for this element. The default content can contain replacement
text, which appears in an element by default when the element is inserted. Replacement text is contained in
‘xm-replace_text’ processing instructions.

If no content is specified, XMetalL inserts replacement text based on the element name. For example, for an
element named ‘Para’, the replacement text is ‘{Para}’. XMetalL does not insert replacement text if none is
specified in the Content section and Paragraph is selected in the Treat As section.

The default content must start with the specified element, not a sub-element. This allows you to specify default
attribute values for the element.

Script

You can specify a script to be loaded and run whenever a particular element is inserted. Most scripts are
written in JScript or VBScript, but you can use any language for which you have a scripting engine that
conforms to the Microsoft Scripting Engine Interface. The name of the language must correspond to the
Progld (for example, PerlScript or Python) of the ActiveX control that implements the script engine.

Inserting a mini-template
For example:
<Title><?xmrepl ace_text {Book Title} ?><Title>

When the <Title> is inserted, it contains the text ‘{Book Title}. Authors can select this text
and type over it with real content.

Inserting a script

The following example illustrates the specifying of default content using a template and
using a script.

Consider the following template:

<War ni ng><Par a>

<?xmrepl ace_t ext {Warning}?>
</ Par a></ \\ar ni ng>

The same results can be obtained with this VBScript code:

Sel ection. I nsertEl enent "Wrni ng"
Sel ection. I nsert El enent "Para"
Sel ecti on. I nsert Repl aceabl eText "{Warni ng}"

Customization Guide

Text layout

L Note: The Selection.InsertWithTemplate method can be used in a script to insert

elements and their default content.

Related Links
Microsoft Scripting Engine Interface

Text layout
You can set text layout properties to determine how an element appears in Plain Text view. These properties
can be set on a per-element basis or globally.

XMetal makes XML source files (as displayed in Plain Text view) easier to view by inserting indentation and
line breaks and distinguishing between content and markup. This formatting is called text layout or pretty
printing. You can specify this setting through the Disable Text Layout property in the Global properties.

Text layout properties are also available on a per-element basis. For example, you can

» Preserve space or indent content
« Add blank lines before or after tags
« Change tag color

Layout options are applied to files saved from Tags On and Normal views. These options are also applied
when you switch from Tags On or Normal view to Plain Text view.

Preserve Space

When you turn on Preserve Space for a parent element, any Element Options changes you specify for child
elements are ineffective. If you want to use the Preserve Space option for a parent element, be sure that all
child elements have the appropriate Element Options selected.

Treat As
You can configure XMetal to treat selected elements as paragraphs, toggling elements, image elements, or
list elements.

You can also rank the elements of each type. Whenever XMetaL can insert a paragraph, image, or list element,
it inserts the first-ranked valid element of the required type. If the first element in the given ranking is not
valid, XMetal tries to insert the second-ranked element, and so on.

Paragraphs

Designating an element as a paragraph element determines how the element is processed:

« If you attempt to enter text where text is not allowed but where a new paragraph is allowed, XMetal uses
one of the elements designated as paragraph elements to create a new paragraph element and places the
text inside the new element.

« If you press Enter at the end of any element and there is no followed-by element or required element and
the element cannot be split, XMetaL inserts one of the elements designated as a paragraph element.

« When adding items to the list of elements in the Paragraph Order, only items that have been set as
paragraphs can be added.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 15

http://msdn.microsoft.com/scripting/

Global properties

Toggling elements

You can assign inline elements to the Bold ll, Underscore il and Italic Ll buttons. When an element
is assigned to one of these buttons, clicking the button inserts an empty inline element at the cursor location
or surrounds selected text with the inline element markup (if the assigned element is valid in that location).
You can also click the button to remove markup for the assigned element from the selected text.

You can also assign an element to a macro. In this case, the macro should be assigned to a toolbar button.

Images

You can designate an element as an image element. The following attributes are available on image elements:

« Source (a filename, a URL, or an entity name used to map to the image)
* Height

» Width

e Alt Text

* Valign

» Scale

Lists

You can use special list editing features to insert and edit list elements. The following list types are available:

* Numbered lists
* Bulleted lists
 Definition lists

Numbered and bulleted lists consist of a list element containing one or more list item elements. Some lists
may have a list header element.

Definition lists are two-part lists that consist of a list element and two kinds of sub-elements: term elements
and definition elements.

Global properties

16

You can specify some properties for all elements on a global basis. Global properties are available through
the #GLOBAL element.

Disable text layout

This property is set to Yes by default, meaning that all text layout properties for every element are disabled.
In order to set any of the Text Layout properties for any element, this property must be set to No.

Paragraph order

When authors press Enter at the end of a paragraph element, XMetalL inserts a new paragraph element.
The default behavior is to insert the same paragraph element type after the current paragraph. You can use
the Paragraph order to set up a list of elements (which you have previously set as Paragraph types using the
TreatAs property) that XMetal tries to insert. If XMetal cannot find a valid element to insert from the list, no
element is inserted.

Customization Guide

Virtual element

Namespaces

You can set unique customization properties to similarly-named elements from different schemas. Namespaces
are displayed in the Customization Editor as prefixes to the element name in the form:

{nanespace}: { el enent nane}

You can edit namespaces by right-clicking on the #GLOBAL element and selecting Edit Namespace Prefix-
URI Map.

Virtual element
Elements that you specify as Virtual elements are added via script in the macro editor with the AddElement()
and AddElementTolnclusion() methods.

To add or remove a virtual element, right-click an element and select Virtual Element > Add Entry or Virtual
Element > Remove Entry.

In-Parent Element 3
Wirkual Elerment 3 | Add Enkry
Reset CTM Properties | Remowe Entry

In-Parent element

You can define a context for an element by specifying an In-Parent element. If no In-Parent element is
specified, the properties apply to the element in all contexts.

When you define an In-Parent element you are informing XMetalL Author that the properties assigned to this
element apply only in a specific context. To assign an In-Parent element, right-click an element and select
In-Parent Element.

| In-Parent Element * | Insert Entry @ <titlE=

Wirtual Element 3

Resel CTM Properties

Assigning an In-Parent element

For example, to assign properties to all Title elements in the following document, you do
not need to specify an In-Parent element. However, to assign properties only to Title
elements that appear within Chapter elements, you need to specify Chapter as the In-
Parent element.

<Book>

<Titl e>My Book</Title>

<Chapt er >

<Title>Wel cone to Chapter 1</Title>
<Para>This is a paragraph...</Para>
</ Chapt er >

<Bi bl i ogr aphy>

<Title>This is my bibliography</Title>
<Entry>This is an entry...</Entry>
<Entry>This is an entry...</Entry>
</ Chapt er >

</ Book>

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 17

Building a customization

Building a customization

When you build a customization, you compile all of your customization files into a binary distribution file called
an XMetal Application Customization (XAC) file. The XAC file is deployed to the XMetalL Author or XMetalL
XMAX authoring platforms.

Build options are available through the Build menu. You can check the build status, including warnings and
errors, in the output pane.

After you have built the project, check the task list to view information about the build that may require your
attention before the customization can be deployed.

You can see the results of the build by browsing to the Output folder. The files in this folder are either copied
project files (for example, CSS and INI files) or compiled files (for example, MCR files). DTDs and schemas
are not directly included in XAC files. Instead, they are built into rules files, which are included in the XAC
file.

Related Links

Configuring the build environment on page 18
Before you build your customization for the first time, you may have to configure the build environment.
You can do this by setting project properties.

Deploying customizationsYou can deploy XMetal customizations by distributing individual files or a single XMetaL
Application Customization (XAC) file.

Configuring the build environment

Before you build your customization for the first time, you may have to configure the build environment. You
can do this by setting project properties.

In most cases, you do not have to set all project properties. However, the general and debugging properties
may have to be set for every customization. You can view these properties by selecting the customization
project folder in the Solution Explorer and clicking View > Property Pages. These properties include general,
debugging, and post-build properties.

Table 2: General properties

Name Description

Output directory The destination folder for the build files. If no folder is
specified, the subfolder \ Bui | dPr oj ect is used.

Output File Name The name of the generated XAC file.

Table 3: Debugging properties

Name Description

Command The application to launch when testing your customization.
If you have indicated XMetaL Author in the configuration
list, the default setting for this is the latest version of XMetalL
Author that you have installed on your system. If you have
indicated XMetaL XMAX in the configuration list, there is
no default setting. In addition, you must indicate the
container application that instantiates the XMetaL XMAX

18 Customization Guide

Debugging a customization

Name

Description

Command line

Working folder

control, or, in the case of an HTML page that contains the
ActiveX control, you must specify Internet Explorer (usually
inthe {drive}\ Program Fi | es\ | nt ernet

Expl or er folder, where { dr i ve} is the drive letter of
the installation path).

XMetaL Developer is used by default
XMAX_x64_test.exe/lXMAX _x86_test.exe applications
for Debugging and testing an XMAX customization
on page 20.

The command-line arguments to be added. If you have
indicated XMetaL Author in the configuration list, this
property is typically an XML document based on your
customization.When opening a document in XMetal Author,
enclose the document path and name in quotation marks
("). If you have indicated XMetaL XMAX in the configuration
list and your customization has XMetaL XMAX embedded
in an HTML page, this property is the HTML page that
contains the embedded XMetaL XMAX object. If you have
a container application that instantiates XMetaL XMAX, the
arguments have no effect unless your container application
accepts command line arguments.

XMetalL Developer is used by default
XMAX_x64_test.exe/XMAX _x86_test.exe applications

command line arguments for XMAX debugging on
page 21.

The folder that the application specified in the Command
property opens in. It is the default folder for the launched
application.

Table 4: Post-build properties

Name

Description

Command line

Description

Exclude from build

The application or batch file plus the command-line
arguments added to the call to launch the program.

The text that Visual Studio .NET displays when the post-
build application runs.

Toggles the post-build application launch on or off.

Debugging a customization

If you are testing your customization using XMetaL Author as your test application, you can quickly move
between XMetaL Author and XMetalL Developer to test and change scripts, style sheets, and customization

files.

When XMetal Author is launched from inside XMetalL Developer, the following items are added to the Edit

menu:

» Edit CSS file in XMD. By clicking this menu item, the currently-selected element in XMetalL Author is
passed back to the XMetal Developer environment and the CSS Editor is opened with the element selected.

XMetal Developer 19.0

© 2024 JustSystems Canada Inc. 19

Debugging and testing an XMAX customization

Changes made to any of the display settings are automatically updated once you save the CSS. By returning
to the debugging application, you can immediately see your changes in the document view.

» Edit CTM file in XMD. Clicking this menu item returns control to the XMetalL Developer environment and
opens the CTM Editor. From there you can modify this file and change the behavior of the macros it contains.

L Note: Sometimes, complex selectors cannot be resolved, in which case XMetalL Developer asks you

to locate the selector yourself from the list provided in the CSS editor.

If you are testing your customization in XMetaL Author, and you indicate that you want to create a new
document from a template, XMetalL Author uses the DTD or schema for the customization project to create
the new document.

If you are testing your customization in XMetaL Author, and a script stops at a line that contains a run-time
error, you cannot edit the script and continue execution. To continue executing a script after a run-time error,
click Break, then set the next line to be the next statement to be executed by right-clicking the next line and
selecting then select Set next statement from the context menu. You can edit the script only after it has
finished executing. To edit the script after execution is complete, use the Visual Studio .NET script editor.

L Note: XMetalL Developer cannot extract SGML declarations from documents in debug mode. Additionally,

documents with internal element declarations (internal subsets) produce errors during the build process.

Related Links

Scripts on page 31
Scripts provide access to XMetalL Author or XMetaL. XMAX via an object model that is based on the
Document Object Model (DOM) and the Microsoft Word VBA model.

Debugging and testing an XMAX customization

20

The XMetalL Developer installation contains container applications for debugging and testing XMetaL XMAX
customization.

Application locations:

e <installation fol der>\Devel oper\Utilities\XMAX x64 test.exe
e <installation fol der>\Devel oper\Utilities\XMAX x86 test.exe

Applications support base operation:

* New, Open, Close, Save and Save As document
 Find in document

 Spell check

» Enable/disable document XAC customization

« Enable/disable plain text view

 Find and run customization macros

For testing a customization outside XMetaL Developer, the following operations are supported in
addition to base operations:

« Add, view and modify macros

« View and open customization resources (*.mcr, *.css, *.ctm, etc.) associated with customization
* Reload resources, document or application

« Open new instance of application and documents

Customization Guide

Debugging and testing an XMAX customization

XMetal Developer 19.0

B! Edit Macro - O X
Name Language Hide Key Id
‘ abc ~ ‘ JScript false ‘ |
Tooltip ‘
@& XMAX 16.0 (x64) Test Application (basic_cameras.xml) Pewlim ‘
ola = |v <SCRIPT../> files Show |
PlCt-l]I‘e size and I‘E-!SO]l]tloll-ﬂIe not the onl Macro file ‘C:\PmgramData\SuﬁQuad\XMAX\StartUp\abcftesl.mcr ~ Show ‘V
the image processing algorithm s used als
Show macro file macros only
0 ur PI Cks Macro content: < abc >
Corporate Syno RM-4D F|
: //Print("Test");
Users b var r = ActiveDocument.Host.Selection;
th [if (typeof(r)=="object"){
/I r.SelectAll();
€ ActiveDocument.Host. Alert(r.selectionLocation);
Ci
I 11
y Find text |:| DOWN uP Copy selection to "Find"
li
d Run macro ’ Save |v Close
ir . _ = .
= [[Article / Title < >
Macros 16.0 and higher
‘v abc : <abc-test.mar> | Run ‘v [| Disabl tomization folder conffnt [] Disable application level macros
Application Active Document [Hidden Run macro Ugraﬁata\SuﬂQuad\XMAX ‘ Browse ‘V
Edit macro
Customization resources
Add new macro
Files and folders |[APP_MCR abc-test. mar] C:\Prog 3 N Edit ‘v
Edit macro file
Reload resources |[DOC_CSS] - Refresh All ActiveC Edit macro file with... > Run
File Show macro file in explorer
Document ‘ C:\XMAX64_Test\file-only\Journaist\pasic_cameras.xmi ‘f’ Open |w Close New Save ‘v
Path format (®) File system () URL
Customization (xac) ‘ “' ‘ Clean
Default View Default ~ Disable Plain Text View Disable explicit customization About XMAX Exit |w
Command line parameters:
« Load the document in the application XMAX x64 test.exe "<docunent full path>"

» Load the document with the customization file for testing without using a Visual Studio debugging
pat h>" -x="XAC file full

environment: XMAX x64_t est.exe -f="<docunent full
Initial Ul related command line parameters:

* "Plain Text" is default view: -v=S
« "Tags On" is default view: -v=T
* "Normal" is default view: -v=N

« Enable source view by default (can be turned on/off later in the application Ul): -ESV
« Disable XAC customization specified in -x="XAC file full path" (can be turned on/off later in application Ul).

Use this parameter for debugging in Visual Studio: -DXAC

 Hide settings and resources specific information (can be turned on/off later in the application Ul) : -m

Command line examples:

« XMAX x64 test.exe "c:\ Tenp\ My docunent s\ exanpl e. xm "

« XMAX x64 test.exe -m -f="c: \ Tenp\ My docunent s\ exanpl e. xm " -x="c: \ Tenp\ Wy

cusom zati ons\ dt d- subj ect s. xac"

© 2024 JustSystems Canada Inc.

pat h"

21

Customizing using C++

* XMAX_x64_test.exe -m -ESV -DXAC -v=T -f="c: \ Tenp\ My docunent s\ exanpl e. xm "-x="c: \ Tenp\ My
cusomni zat i ons\ aut hor . xac"

Customizing using C++

You can extend the functionality of XMetaL by creating an ActiveX control (such as a DLL) in C++. For
example, you can use C++ to create a custom dialog.

The following example uses the Journalist DTD, which is based on DocBook. Here, you create a DLL in
Microsoft Visual C++ and test the output using XMetalL.

Example

You create a new ATL project called Journalist that contains the following:

e An ATL class called CCi t ati on
* A method called NewCi t at i on
» XMetal interfaces imported from. . \ Program Fi | es\ XMet aL\ Aut hor\ xnetal .tl b

You can then test to see if you can call the new object from XMetaL. First, add the following
line to the body of the NewCi t at i on method:

. Af xMessageBox("I nside NewCitation() Procedure!");

After you have built Journalist.dll, open . . \ Pr ogr am

Fi | es\ XMet aL\ Macr os\j ournal i st. ntr using a text editor and add the following
macro:

<MACRO nane="InsCite" key="Ctrl+Al t+A" |ang="JScri pt">

var obj =new ActiveXObject("Journalist.Ctation");

obj . NewCi tation();
</ MACRC>

When you start XMetal, create a new document using the Journalist DTD, and press
Ctrl+Alt+A, XMetalL displays a dialog containing the text you added to the NewCi t at i on
method.

Explicit application-level customization support (without using XAC)

22

Integrating XMetalL Developer with Microsoft Visual Studio provides efficient tools for XMetalL application-
level customization script debugging. Application-level customization macros apply to all types of documents
opened in XMetaL. The <XMet aL instal |l ation fol der>\ Aut hor\ St art Up folder contains a set of
*.mcr files that defines customization scripts and meta information for integration with XMetalL. Complex
customizations can contain hundreds utilities and tens of thousands line of code. XMetalL *.mcr files are
written in xml format. Optional first children of "<MACRO>" tag are "<SCRIPT/>" elements.

<SCRIPT/>" elements allow users to specify the list of script files that XMetaL embeds into the macro during
XMetal start up initialization. The XMetalL Developer solution provides an efficient way of maintaining, native
editing, navigation and script debugging in Visual Studio. It includes breakpoints, variable watching, XMetalL
APl intellisense support, etc.

Customization Guide

Explicit application-level customization support (without using XAC)

<SCRIPT/>" elements contain information about script files' location, language and title (usually it is the name
of the file that appears in Visual Studio during debugging). The "src" attribute contains the relative path to a
referenced script file. The '$SQDIR' variable can be used at the beginning. XMetaL will resolve it as path to

the ..\ Aut hor folder.

<!DOCTYFE MACROS SYSTEM "macros.dtd®™>
<MACROS>
<MACRO name="0On_Macro_File_Losd® lang="JScript® hide="true®>
<SCRIFT arc="55QDIR\Teat\ExtensionaData.ja™ lang="J5cript™ name="ExtensionaData.ja"></SCRIFT>»
<SCRIPT arc="55QDIR\Test\WhiteBoardService.js® lang="JScript” name="WhiteBoardService.ja"»</SCRIPT>
<SCRIFT arc="55QDIR\Teat\WhiteBoardImpl.ja™ lang="J5cript™ name="WhiteBoardImpl.ja"></SCRIFT>»
<SCRIPT arc="55QDIR\Teat\WhiteBoardDebug.ja"™ lang="JS5cript®™ name="WhiteBoardDebug.ja">»</S5CRIFT>

<! [CDRTA[
11>
< AHACRO>
<MACRO name="Add to favorites...® lang="JScript®™ hide="falae®™ deac="ABC">
<! [CDRTA[
f/ OpenhddToFavoriteaDlg(...) defined in WhiteBoardImpl.js

OpenhddToFavoriceaDlgil)
11>
< AHACRO>
<MACRO name="Test macro® lang="JScript®™ hide= ®"crue®>
<SCRIPT arc="5SODIR\XMDE\WHiteBoard\js\test.ja" lang="JScript®™ name="tesat,ja"></SCRIFT>
<! [CDATA[
ff doTesc(...) defined in tesat.ja
doleat (1)
11>
< MMACRO>
< /MACROS>

To use this capability in XMetaL Developer, a user should create an XMetalL application-level customization
project. An XMetaL application-level customization based on <SCRIPT/> references in .mcr files does not
use XAC so the initial customization content can be empty. All document files (scripts, macros (*.mcr), forms
(*.xft), *.css styles or any other types) must be added in the Visual Studio "Solution Explorer" tab outside
of the XMetal Project node as an "Existing item...".

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 23

Explicit application-level customization support (without using XAC)

w File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search (Ctrl+Q)

Pe-0| 8 -2 H |9 - ¢ - xMetal, - Default - b st | @& i
Solution Explorer ARl EditinNotepadimpljs _xmdv_xmetalprojectmer & & X
=R Ao + 1 <?xml version="1.8"?>
WAl o-2F F=R
Lo 2 <!DOCTYPE MACROS SYSTEM "W")
Search Solution Explorer (Ctrl+;) Poid 3 [S<MACROSS>
9] Solution 'DBG_XMetal' (1 of 1 project) 4
5 | <t--
ti - lisz E
b Conditional Te: Application level 6 <! APPLICATION-LEVEL
D CRCL customization 7 | Rfes
3 Display 8
b DITA 9 [Z/<MACRO name="On_Macro_File_Load" hide
4 Forms 10 <SCRIPT src="$SQDIR\XMDK\XMDVScript
b Icons 11 = <![CDATA[
4 Macros 12 11></MACRO>
b Markdown 13 { <!--
b Rules 14 | !!! Important: if macro starts with '
4 StartUp 15 =
4 EditinNotephdS-—-—"~ 16 - <MACRO name="XMetal Developer setti
D _libs.mer Build 17 H <1 [CDATA[
O _prelude.mfr Rebuild 18 doxMDVSettings();
D 2 o
=y Add b New Project...
[_xmau_evegts.
[_xmau_senqces Scope to This Bxsting Project... ler test mac
D _xmdv_xmdtal| B New Solution Explorer View Existing Web Site... IDK\XMDVTest
B erktaod - S e
lcore.
o ’Z’i;c::;l_n ¥ cut Ctrl+X [‘0 Existing Item... Shift+Alt+A]
0o 7xftdligservi L Pate Ctrl+V S NewSalution Folder
D conditionaltxt! X Remove Del New EditorConfig
O ditamapmd | ©1 Rename =3 25 [</MACRUS>
D) edit-in-notepac 29
B markdowniha Reload Project
D media_displhy.| Unload Project
D multipleOutput Hide Folder
[whiteboard Jnci Unhide Folders
D workbench.gcr
By M Properties Alt+Enter
b Workbench
13 XMDK
keywords.ini
4[] DBG XMetal
3 Macros <e=Empty content
N TSSTIIEE Toolbox Properties Class View = Resource View

Customization documents are usually located under the <XMet aL i nstal |l ati on fol der >\ Aut hor
folder. To modify them, check that the user has system permissions to modify files and folders. Running
Visual Studio as an administrator is recommended.

The XMetaL Developer installation deploys to the XMetalL Author installation folder, application-level
customization for modifying default XMetaL Developer settings.

1. Run xmetal.exe.
2. Run the XMetaL Developer Settings macro. To do this:

Click "Ctrl+?" to open quick navigation tools.

Start to type "developer" in the find edit box.

Select and run the macro.

Check that "Developer installed" and "Advanced script debugging" check boxes are "checked".

o o oW

24 Customization Guide

Explicit application-level customization support (without using XAC)

— XMetal Solution -

E XMetal Development settings X
P g

Project name: ‘ DBG_XMetal Create directory for project

Project folder: |C:\Prugram Files\XMetal 16.0\Author 3]

Import files from folders:

[+] Include subfolders
[¥] Insert import folder title

C:\Program Files\XMetal 16.0\Author\StartUp
C:\Program Files\XMetalL 16.0\Author\XMDK
gram Files\XMetalL 16_0\Author\Rules

File extensions: | js:ini:mcr.xft.css |

Generate solution

— Set HKLMA\SOFTWARE\SoftQuad'xMetal\SingleD ebugger
[#] Debug only XMetal Author or single instance of XMAX

— Set HKLM\SOFTWARE\S oftQuad'Metal \Developmentiiade

[~] Developer installed

[] Disable monitoring CSS CTM changes

[4]:Advanced script debugging:

[] Force monitoring CSS CTM change

— Remove Generated Scripts Files
Uncheck ‘Advanced script debugging' check box.
Reopen application.
Click Remove button

Remove

3. Close XMetal application

Save and exit Exit

4. Open the script documents in Visual Studio, set breakpoints and start debugging as usual for an XMetalL

customization.

XMetaL Developer 19.0 © 2024 JustSystems Canada Inc. 25

External event handling in XMetalL

ie -

% Process: [17648] XMSQAppUniDbg.exe ~

a9 Q-

> Continue ~

Lifecycle Events ~ Thread: [24380] Thread 24380

a

-

BO > 2| #_ st S
Stack Frame: JScript anonymous function

Solution Explorer
@i o-2a

Search Solution Explorer (Ctrl+;)
23 Solution 'DBG_XMetal' (1 of 1 project)
4 Author

Conditional Text

CRCL

Display

DITA

Forms

p =

Icons

Macros

Markdown

Rules

StartUp

4 EditinNotepadSample

LT EditinNotepadimpljs

O _libs.mer

D _preludemer

D) _xmau_commands.mer

AV VVVVVYVYVYVW

O _xmau_events.mcr

Soluti...

Class... | LiveS.. Prope..

Watch 1

Resou...

EditinNotepadimpljs % X

_ xmdv_xmetalprojectmcr @

edit-in-notepad-sample.mcr

whiteboarddebug s

whiteboard_3.mcr

[Miscellaneous ~ @ doNotify

== bt el bt sl A findie” § st e
O
. 228 return;

229 = try {
230 =H H // XMetalL always set $FileChangedPath property to full path of changed file
231 : // in Application.AddFileChangeMacro(tempFilePath,...) API - tempFilePath parameter
232 // can include wildcard characters, for example, an asterisk (*) or a question mark (?).
233 var filePathDefault = "";
234 var defaultEventPropName = "$FileChangedPath";

CRRE RN - rcroo:to - cppiication CustonProperties iten(detoul tEventPropiane) B
236 —E if (macroData &% macroData.value) {
237 : ! filePathDefault = macroData.value;
238 }

CUE IR - - r=cro0:t: - apolicstion Custonproperties iten(chis fAppPropertyNanecventrilechanged)}
240 = if (macroData &% macroData.value) {
241 : var info = macroData.value;
242 v var procDef = this.fProcDef[info.infold];
243 —E if (procDef && Application.ReadableFileExists(procDef.tempFilePath)) {

© 244 }‘/ar tempFilePathCopy = Application.UniqueFileName(this.fBaseFolder, this.fTempFil
245 /7 Application.CopyAssetFile(procDef.tempFilePath, tempFilePathCopy);

s 246 | XM.MFO.gFso.CopyFile(procDef.tempFilePath, tempFilePathCopy, true);

Toolbox RIVEERG

& No issues found 4

Breakpoints

Search (Ctrl+E) L~ Search Depth: New- | X | P & 2G| %= Show Columns ~ | Search:
Name Value Type Name Labels Condition Hit Coun
4 @ macroData o NameVariantProperty V1@ EditinNotepadimpljs, line 227 character 5 break alw
> @ [Methods] EditinNotepadIimpljs, line 235 character 9 break alw
@ haic Sinf? 8 | siifig EditinNotepadimpljs, line 239 character 9 break aln
2 e g B iorcpadimpi ine 244 chrocer 17
@ filePathDefault “C:A\temp\\AppTest\\xmt71F.oxt" Q ~ striing
4 @ procDef {3 Object
@ bookmarkRangelD ~ "1" Q ¥ String
@ proclD 10164 Number
@ srcFilePath = golovyak\\d: tal example... Q ¥ String
@ suggestionsArr el Object
@ tempFilePath “C:\\temp\\AppTest\\xmt71F.txt" Q ~ String
@ text “Section" Q ¥ String
Add item to watch

External event handling in XMetalL

26

While writing XMetaL script customization, some actions require using third-party external applications or
running bat files. These actions can take significant time but it is possible to handle such operations
asynchronously in XMetalL.

XMetalL Customization JScript APIs allow users to:

» Create processes

» Specify command lines
* Run processes asynchronously

The return value of such operations is "process ID".

XMetaL API: Application. RunAfterProcessDone(...) and Application. RunAfterProcessDone2(...) run
XMetal macros after process (identified by "process ID") termination and XMetal is in idle state.

A VARIANT type optional parameter type can be passed to Application. RunAfterProcessDone(...). The
assigned XMetal application-level custom property contains the parameter's value when XMetaL runs the

macro.

Application. RunAfterProcessDone(ProcessID, MacroName, ResourceName, ResourceData);

Application. RunAfterProcessDone2(ProcesslID, MacroName, ResourceName, ResourceData);

Runs the XMetalL macro after process termination.

Returns: No return value.

Customization Guide

External event handling in XMetalL

Parameters:

 ProcessID: long - application process id for monitoring the "process terminated" event

» MacroName: string - macro name to run

» ResourceName: string - XMetalL Application level Custom Property name

» ResourceData: VARIANT - value of "ResourceName" property. "ResourceName" property is valid only
during "MacroName" macro execution.

Helper methods:

Application. IsProcessRunning(ProcessID);

Checks if a process is running.

Returns: boolean true if process is running. otherwise false

Parameters:

ProcessID : long - application process id

Application. TerminateProcessEx (ProcessID, Parameterl, Parameter2, Parameter3);
Terminates a running process.

Returns: long - internal use value.

Parameters:

ProcessID : long - application process id to terminate

Combination of Parameterl, Parameter2, Parameter3

0:0: 0 - "brute force" to terminate process. Uses windows API TerminateProcess(...)
-1:0:0 - find window by process id and send WM_CLOSE message

-1:-1: 0 - find window by process id and post WM_CLOSE message

Parameterl: contains window handle (> 0)

Parameterl: 0 : 0 - send WM_CLOSE message to window

Parameterl: -1: 0 - post WM_CLOSE message to window

Parameter2: > 0 use windows API SendMessageTimeout(...)
::SendMessageTimeout(xxx, WM_CLOSE, 0, NULL, Parameter3, Parameter2, ...);
XMetal APIs:

« Application. AddFileChangeMacro(filePath, macroName, propertyName, propertyValue)
» Application. RemoveFileChangeMacro (filePath, macroName)
« Application. IsFileChangeMacro (filePath, macroName)

Allow file changes on the local file system to be monitored and XMetalL macros run when events occur and
XMetal is in idle state.

A parameter that specifies the local file system folder and file name can include wildcard characters (for
example, an asterisk (*) or a question mark (?)) in the file name. The "file changed" event triggers running
the XMetaL macro " macroName" . XMetal sets the "$FileChangedPath" application-level custom property
to the file path of the changed file. A VARIANT type optional parameter can also be passed to Application.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 27

External event handling in XMetalL

28

AddFileChangeMacro (...). The assigned XMetal application-level custom property contains the parameter's
value when an XMetaL macro is running. Both properties are valid only during the macro execution.

Application. AddFileChangeMacro(filePath, macroName, propertyName, propertyValue)
Monitors file change events and runs a macro when file content changes.

Returns: long - non zero if operation succeeded.

Parameters:

« filePath : string - local file system path to file for monitoring "file changed" event.

File name part can include wildcard characters (for example, an asterisk (*) or a question mark (?) for
monitoring changes in multiple files.

« macroName : string - macro name to run
 propertyName : string - XMetaL application-level custom property name

* propertyValue : VARIANT - value of "propertyName" property. "propertyValue" property is valid only during
"macroName" macro execution.

Application. RemoveFileChangeMacro (filePath, macroName)
Removes the monitoring of a file change event.

Returns: long - number of objects that are monitoring "file changed" events. Object is identified by "filePath
+ macroName" string.

Parameters:

« filePath : string - local file system path to the file for monitoring the “file changed" event.

« macroName : string - macro name to run. If macroName is an empty string, then remove all macros
associated with filePath.

Application. IsFileChangeMacro (filePath, macroName)
Checks if the file change event "filePath + macroName" is monitored.

Returns: long - number of objects that are monitoring "file changed” events. The object is identified by the
"filePath + macroName" string.

Parameters:

« filePath : string - local file system path to file for monitoring "file changed" event.

« macroName : string - macro name to run. If macroName is an empty string, then return the number of all
macros associated with filePath.

XMetal API Application. RunMacroOnldle(MacroName, mlsDelay, propertyName, propertyValue)
Runs the macro specified by the "MacroName" on idle.

Returns: long - 1 if macro was added to queue - 0 otherwise.

Parameters:

* MacroName : string - macro name to run
« misDelay: long - minimum delay interval in millisecond before macro can run
» propertyName : string - XMetalL Application level custom property name

Customization Guide

External event handling in XMetalL

 propertyValue : VARIANT - value of "propertyName" property. "propertyValue" property is valid only during
"MacroName" macro execution.

XMetal API Application. RunMacroOnldle(MacroName, mlsDelay, propertyName, propertyValue)
pushes a macro into the queue of macros that XMetaL runs in idle state. An optional command line parameter
can set a minimal delay interval in milliseconds before the macro can run. The VARIANT type optional
parameter "propertyValue" can be passed to Application. RunMacroOnldle(...). The assigned XMetalL
application-level custom property contains the parameter's value when the XMetalL macro runs.

This API prevents the interruption of time-sensitive actions or macros being execution (for example xmetal
ON_UPDATE_UI event macros).

The XMetal installation folder contains the helper application RunXMetal. Macro.exe, which runs a macro
when (or if) XMetal is running and in idle state.

RunXMet aLMacr o. exe [-x=1] -m="<pacro name>" [-np="<paraneter nane>"
-mv="<paranet er val ue>"]

The mandatory parameter -mn="<macro hame>" runs the macro.
The optional parameter "-x=1" forces xmetal.exe to launch if it is not running.

Optional parameters -mp="parameter name" and -mv="parameter value" type string define the XMetalL
application-level custom property that is valid only when <macro name> macro is running.

The XMetal installation folder contains the helper application XMProjWait.exe, which is a "minimal system
resources consuming process" that can be terminated any time without affecting application integrity. Optional
command line parameters can set a time interval in milliseconds after which the process terminates itself. It
allows using it as an "external global, out of process variable or event" for avoiding concurrent access to
XMetal script resources.

The XMetalL Developer installation contains an example of using the "XMetaL External Event Handling API"
in an XMetaL application-level customization. The example is located in the

C:\ Pr ogr anDat a\ Sof t Quad\ Devel oper\ Sanpl es\ Asynchr onousEvent Handl i ng\ Aut hor folder.
Copy the contents of this folder to the Aut hor folder in the XMetalL Author 16.0 or higher installation folder.

The example can be demonstrated in the following test scenario:
Scenario:
1. Run the File changed XMetalL API example macro. It opens the modeless dialog that allows:

a. Select the word under the cursor or select text in the open document.

b. Save to atemporary file: selected text, information about the selected text location in an open document,
an open document xml content .

c. Select and launch a third-party application and pass the temporary file as command line parameters.

d. Watch and change the status of running applications and "temporary file changed" events tracking.

2. When the "temporary file changed" event occurs:

a. Cancel listening to the "temporary file changed" event.
b. If the temporary file contains a list of suggestions for inserting/replacing the original text:

» Show the XFT form modeless dialog with the notification.

» Open or activate the original document and move the section to its original location.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 29

External event handling in XMetalL

» Show XFT form modeless dialog with options: to insert/replace new text, or start new instance of
the third-party application with the new text as the parameter.

3. When the "application terminated" event occurs:

a. Cancel listening to the "temporary file changed" event, and remove the "temporary file".
4. When the "XMetal close" event occurs:

a. Close all "temporary file changed" events.

b. Terminate all applications.

File changed XMetalL APl example (silent) macro runs the last third-party application with Active Document
selected as parameter.

30 Customization Guide

Scripts

Scripts provide access to XMetal Author or XMetalL. XMAX via an object model that is based on the Document
Object Model (DOM) and the Microsoft Word VBA model.

The following defintions apply:

« A macro is a set of instructions consisting of condition statements, APl commands, and functions.
« A function can run other macros but must be contained inside a macro, though it is not a macro itself.

Scripts are stored as components (for example, JScript files) in your customization. These components are
visible through the Solution Explorer. You can create a new script or import an existing script. Scripts are
deployed with your customization. You are advised to test your scripts before you deploy them.

For more information on scripting for XMetaL Author and XMetaL XMAX, see the XMetalL Programmer’s
Guide.

Table 5: Script properties

Name Description

Name The filename of the macro

Description The description of the macro

FilePath The filepath to (location of) the script

Hidden Indicates whether or not the macro is hidden from the user

Language The scripting language

MacroName The name given to the script at the time of its creation

ShortcutKey The Hot Keys assigned in XMetaL Author to launch the
script

UseAs Indicates the UseAs type

Macros folder

Scripts that are included in the Macros folder become XMetal Author macros and are deployed in an MCR
file that you create when you build your project.

All scripts inside the MCR file are surrounded with <MACROS> and </MACROS> element tags Individual
scripts are denoted by <MACRO> and </MACRO> element tags.

<MACRCS>
<MACRO>

}/ Macro one
</ MACRO>
<MACRO>
/1 Macro two

</ MACRO>
</ MACRCS>

XMetalL Developer 19.0 © 2024 JustSystems Canada Inc. 31

Script editor

Script editor

The script editor is part of the integrated development environment. It appears when you create or open a
script.

*

nietalstylel css [Form] XMetall.js | 1 bk
J/ EZM J3cript Macro File

[v]

f/Generated code. Do not edit. This iz needed for Intellisense to displs
var Application = new AetiveXObject ("EM.Application®™):

var Documents = new ActiveXObject ("EM.Application®™):

wvar Aetivelocument = new hetivedObject ("EM.Application®™):

var Selection = new ActiveXObject ("EM.Application'™):

var ResourcelManager = new AetiveXObiject ("EM.Application®™):

J/End generated code.

-
4| | »

Creating scripts

32

You have the option of inserting new scripts as separate files within your project or including them in the
Macros folder. When you build your customization, all scripts included in the Macros folder become XMetalL
macros.

When you create a script, you can specify the following options.

* Macro Name. You can select from the list of built-in macro events fired by XMetaL Author or XMetalL XMAX,
or you can type a name for a new macro file.
» Select scripting language for new macro. By default, JScript and VBScript are provided. A single macro
file can contain any of these types of scripts, or any combination of them.
@ Note: You can add a Perl script or Python script to your XMetaL project (provided the scripting language
is installed), however, there may be some Intellisense limitations and you may not be able to use
breakpoints in these scripts.

« Insert as separate script file. If you want this script to be a separate file in your project, check this option
and type a name. The new file appears as a standalone file that is part of your project. However, it is not
added to the Macros folder and it is not treated as an XMetaL macro.

Customization Guide

Create a script

Create a script

You create a new script through the Create Script File dialog box. After you create the script, you can edit it
in the script editor.

1. Select your project in the Solution Explorer.

2. Click Project > Add New Item and select a Macro Script template.
The Create Script dialog box opens.

Create Script File 3 x|

Create a new script file
Thiz wizard will create a new macro script to add o pour XkMetal customization.

The script iz nomally incorporated into the MCR file at build time.

Macro Name; |Mewhacra j

Custam macro,

Select the zcripting language for the new macro: IJSC[ipl j

[Inser this as a separate script file [not part of the MCR).

Script File Marme: [ewkdaco =

< Back Cancel | Help |

3. Type a name, select the scripting language, and set the Insert as separate script file option.

4. Click Finish.
The script editor opens. Some script is automatically added to the macro to enable IntelliSense functionality.
Do not delete or modify this automatically-generated script; simply begin your own script below the existing
code.

Importing scripts

You can import individual scripts or an entire file of scripts (an MCR file containing multiple scripts) into your
XMetal customization.

Individual scripts are stored as components and are visible in the Solution Explorer. When you import a script,
you have the option of including it in the Macros folder. When you build your customization solution, scripts
within the Macros folder become XMetalL macros and are stored in an MCR file.

You can also import all of the scripts within an existing MCR file. When you import scripts this way, they are
added to the Macros folder.

Import a script

1. Select your project in the Solution Explorer.
2. Click Project > Add Existing Item.
3. Browse to the folder containing your script and click Open.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 33

Import scripts from an MCR file

The Import as Macro dialog opens with the fields you can use to control the behavior of the macro.

Import scripts from an MCR file

Select your project in the Solution Explorer.

Click Project > Import XMetaL Macros.

Browse to the folder containing the MCR file and select it.
Select the macros you wish to add and click Add.

P wbdpR

Testing scripts

You can test your script within a debugging session without having to deploy your customization.

J Note: This information applies to document-level applications only.

In order for your scripts to properly run in the target application (XMetaL Author or XMetaL XMAX), you may
first have to set the build properties.

There are some conditions during a debugging session when you cannot edit an XMetaL script. Scripts that
create fatal crashes of the scripting engine may result in instability and crashes in XMetalL as well.

For more information on editing scripts during a debugging session, See Debugging Customizations.

Importing data

34

You can import data from a database using the Import Table dialog. This dialog is implemented using a macro.
You can update data you have imported also using a macro.

Using the Import Database dialog, you can create a table in your document based on the contents of a
database or spreadsheet file. When you create a query, the parameters are saved to a file that can be used
to refresh the data.

To allow users access to this functionality, you must add macros to your customization. For an example
implementation, see the Import Table and Update Table macros in the sample macro file

Macr os\j our nal i st. ncr. These macros may be customized for your DTD and local file system and
attached to menus or toolbars.

The Import Database dialog box is implemented by the DBImport interface.

In order to use the Import Database dialog, the following components must be installed before you install
XMetal:

» Microsoft Data Access Components (MDAC). If you do not have MDAC installed when you install XMetalL,
the XMetal installer offers to install it.

« Windows Scripting Engine. This is installed when you install Internet Explorer; you can also download the
most recent version of the scripting engine from here.

For more information about the DBImport interface, see the XMetaL Programmer’s Guide.

Customization Guide

http://msdn.microsoft.com/en-us/library/ff729665%28v=VS.94%29.aspx

Converting Microsoft Word documents

Converting Microsoft Word documents

One method of converting Microsoft Word documents to XML is through a Visual Basic script. You can see
a sample implementation in the Journalist customization. You can create your own solution for converting
Word documents by adapting the Journalist example.

The Journalist customization includes a macro that converts the paragraph and character styles used in your
MS Word document, as well as various Word objects such as graphics, lists and tables, to specific elements
in the Journalist DTD. Any content within the Word document that has been tagged with a style not supported
by the macro is converted to a processing instruction.

The macro script is contained in the following VBScript file:
..\ XMet aL\ Aut hor\ nacr os\ j our nal i st _openword. vbs.

To see how the script works, create a new document using the Journalist DTD and click the Open Word

Document El on the toolbar. You can convert the following sample Microsoft word document:
..\ XMet aL\ Aut hor\ Sanpl es\ Caner as\ Wr d\ Caner asl nFocus. doc.

PDF and HTML previewing and printing

Your XMetaL Author customization can include support for PDF and HTML previewing and printing. This
functionality is added via macros. An example implementation is included in the Journalist customization.

You can customize XMetal to print, view, and save documents in Adobe(TM) PDF and HTML format. The
macros you create should be JScript and they should be included in the MCR file. (Ensure that the Insert
this as a separate script file option is unchecked.) The table below indicates the method that should be

added to each macro following the auto-generated script. See the XMetalL Programmer’s Guide for more

information.

Before you begin, check the following:

« You have Adobe Acrobat(TM) Reader (with Web browser integration enabled) installed on your computer
« Your customization does not include the On_Before_Document_Preview macro (if it does, you must remove

it)

Table 6: PDF support macros

Create this macro Include this method Notes

Setup PDF XMLToPDFSetup This macro allows you to specify PDF
formatting. After you have deployed
your customization, you should run this
macro before you save as PDF for the
first time or if you want to change the
PDF settings.

Save as PDF saveAsPDF This macro allows you to save as PDF.
You should customize the XMetalL
Author user interface to allow easy
access to this macro through a toolbar
button, menu item, or shortcut key.

View PDF previewPDF This macro allows you to view and print
PDF. You should customize the

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 35

PDF and HTML previewing and printing

36

Create this macro

Include this method

Notes

XMetal Author user interface to allow
easy access to this macro through a
toolbar button, menu item, or shortcut
key.

Table 7: HTML support macros

Create this macro

Include this method

Notes

Setup HTML

Save as HTML

View HTML

XMLToHTMLSetup

saveAsHTML

previewHTML

This macro allows you to specify HTML
formatting. When you run this macro,
it creates an XSLT file used to generate
HTML output from an XML document.
The file is saved in the same folder as
the CSS file.

This macro allows you to save as
HTML. You should customize the
XMetalL Author user interface to allow
easy access to this macro through a
toolbar button, menu item, or shortcut
key.

This macro allows you to view and print
HTML. You should customize the
XMetal Author user interface to allow
easy access to this macro through a
toolbar button, menu item, or shortcut
key.

Customization Guide

DTDs and schemas

A Document Type Definition (DTD) or schema forms the basis of your customization of XMetaL. After you
have planned the workflow, you need to create a DTD or schema. You typically do this using a third-party
tool. You have the following options:

» Create a new DTD. You need to determine the elements and attributes required by your documents. You
then need to define the document structure.

« Modify an existing DTD. You may already have a DTD or schema that you want to use in your
customization, but it requires changes to the elements and attributes or structure.

« Use an existing DTD without modifications. As with the previous options, you need to have an
understanding of the elements attributes and structure.

You can edit elements and attributes within the schema viewer in the XMetal Developer integrated development
environment.

Although XML files can exist as well-formed standalone documents, most XML documents that you edit in
XMetal Author will be associated with either a document type definition or schema. DTDs and schemas
facilitate the exchange of information, enabling it to be easily passed between systems and people. SGML
files must be associated with a DTD or rules file. Schemas cannot be used with SGML documents.

A DTD is a file that describes document content and structure by means of declarations written in a formal
notation defined in the SGML and XML standards. A DTD defines the names of elements that can be used
in documents and describes their hierarchy.

Schema support

Like DTDs, schemas describe the document content and structure, but they are written in XML. XMetalL
Author supports schemas with the following limitations:

« |dentity-constraint definitions are ignored

» The instance attributes xsi : ni | and xsi : t ype are ignored, and cannot be edited in Normal or Tags On
view

Wildcards are not fully supported in XMetalL:

e The xsd: anyAttri but e is not supported

* The xsd: any processCont ent s=ski p and the xsd: any processCont ent s=| ax process contents
controls are not supported

e xsd: any processContents=strict is supported, but the elements used must be imported using
<xsd: i mport >

Creating a DTD

A DTD can consist of a group of files that includes a root file.

A DTD can consist of the . dt d file and one or more files including:

e DTD fragments

XMetalL Developer 19.0 © 2024 JustSystems Canada Inc. 37

Modifying your DTD

« Entity declarations (for example, in catalog files)
* An SGML declaration
 An attribute description file

All required DTD fragments and entity files must be at the locations specified by the identifier used to refer
to them. For example, a DTD fragment may be referenced in the following entity declaration in the DTD:

<IENTITY % cal sdtd PUBLIC "CALS Table DID' "dtds/cals.dtd">
%al sdt d;

In this case, the required fragment should be in the file cal s. dt d, located in the folder dt ds, which is in the
same folder as the DTD file.

The SGML declaration should be located in the same folder as the DTD file and should carry the same name
as the DTD and the extension . dec or. dcl .

Similarly, the attribute description file should be located in the same folder as the DTD file and should carry
the same name as the DTD and the extension . at t .

Modifying your DTD

You can modify elements and attributes using the XMetalL Developer integrated development environment.

When you open your DTD or schema through the Solution Explorer, you can edit properties of the elements
and attributes in your DTD or schema.

XMetaL supports the following content types:

* Mixed content (a mixture of element and character data)
» Element content

» Character data (CDATA)

 Parsed character data (PCDATA)

» Any content (any or none of the different sets above)

« Empty (no content)

Rules files

38

When you build your customization, the DTD or schema is compiled into a smaller binary file called a rules
file. This binary file is deployed with your customization and used by XMetaL Author or XMetaL XMAX when
determining the rules definition for the customization.

Rules files for XML files have a . r | x extension, those for SGML files have a . r| s extension, and those for
schemas have a . r | d extension. In most cases, no extra work is required to create the compiled rules file,
as the compilation and inclusion in the XAC file is automatic. However, you can choose to manually compile
a rules file using either Rules Maker or the mkrls command-line tool.

) Note: When you open or create a document that uses a DTD for which there is no corresponding rules

file, XMetaL compiles a rules file and uses it instead of the DTD. If the DTD is changed, the rules file
must be deleted so that XMetaL can automatically recompile a new rules file. This rules file has the same
format as a rules file generated by Rules Maker.

Customization Guide

Document type declarations

Using Rules Maker

You can start Rules Maker from . . \ XMet aL\ Devel oper\ bi n\ XMhkr ul es. exe.You need to select a
DTD. You can also choose other files, identifiers, and options.

Using the mkrls command-line tool

You can start the Rules Maker command line tool by opening a command window at
..\ XMet aL\ Devel oper\ bi n. Type nkr | s followed by options, followed by the DTD filename.

Table 8: Command line options

Option Description

-0 rul esfile_nane Defaults to dt dnan®e. r | x if the - X option is used, and
dt dname. r | s otherwise

-E catalog_file OASIS catalog file

-S SGWL_declaration_file SGML declaration file

-h attribute_help_file Attribute description file

-n root _el enent _nane Root element (If the first element declared is not the logical
top-level element, you should use this option)

-a Do not report ambiguous content

-C Do not check elements used

-q Do not display warnings

-t Create attribute description file

Document type declarations

An XML or SGML document starts with a document type declaration that associates it with a specific DTD
or schema.

Here is an example of a document type declaration:

<DOCTYPE BOOK PUBLI C "-//Justsystens//Book v1.0//EN' "book.dtd">

The DOCTYPE keyword is followed by the document type name. By default, this is the top-level element in
the DTD or rules file.

External identifiers

The DOCTYPE keyword associates the document with a DTD or rules file using an external identifier. An
external identifier consists of the keyword SYSTEM or PUBLIC, followed by one of the following:

A system identifier
* A public identifier followed by a system identifier
« A public identifier (SGML only)

The system identifier can be a filename or URL.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 39

Internal subset

Each identifier consists of a string of characters enclosed by quotation marks. The system identifier is generally
the DTD or rules file, and the public identifier is an arbitrary identifier. Usually, DTDs that are used by a large
number of organizations have a standard public identifier.

Examples

The following document type declarations can be used to refer to the same DTD. The
name after the word DOCTYPE is usually the name of the top-level element in the rules
file; in these examples, that element is BOOK.

<! DOCTYPE BOOK PUBLI C "-//Justsystens//Book v1.0//EN' "book. dtd">
The keyword PUBLIC indicates that the first identifier that follows it is the public identifier.

This document type declaration refers to a DTD that has the public identifier
-/ 1 Just syst ens// Book v1.0//ENand the system identifier book. dt d.

<! DOCTYPE BOOK SYSTEM " book. dtd" >
The keyword SYSTEM indicates that the identifier that follows it is the system identifier.

If the external identifier starts with SYSTEM, there cannot be a public identifier. This
document type declaration refers to a DTD that has the system identifier book. dt d.

There is a third possibility for SGML documents only:
<I DOCTYPE BOOK PUBLIC "-//Just systens//Book v1.0//EN'>

The keyword PUBLIC indicates that the identifier that follows it is the public identifier. In
this example, there is no system identifier. (DOCTYPE declarations in XML documents
must include a system identifier.) This DOCTYPE refers to a DTD that has the public
identifier - / / Just syst ens// Book v1.0//EN

Internal subset

40

Instead of, or in addition to, the external identifier, the document type declaration can have an internal subset
containing further declarations.

The internal subset is enclosed in square brackets and follows the document type name and the external
identifier (if there is one). Here is an example:

<DOCTYPE Article SYSTEM "journalist.dtd" [

<ENTITY Title "Weasel populations in a forest in Poland">

1>

The internal subset can contain attribute list and entity declarations. Declarations in the internal subset are
read before those in the external DTD or rules file; therefore, they override any external declarations. Duplicate

element declarations are not allowed. Attribute list declarations specifying different attributes of the same
element are combined.

A document type declaration can omit the external identifier thus making the document’s DTD internal, that
is, completely contained in the internal subset. For example:

<?xm version="1.0" standal one="yes" ?>
<IDOCTYPE Article [

<IEl enent Article (Title, Sectl+)>
<!Element Title (#pcdata)>

<IEl enent Sectl (Title, Para+)>

<! El enent Para (#pcdata)>

<IAttlist Article Id I D #l MPLI ED>

Customization Guide

Mapping identifiers

1>
<Article> ... </Article>

The internal subset can also refer to an external DTD using a parameter entity reference. In the following
example, % our nal i st. dt d; is the parameter entity reference:

<?xm version="1.0"?>

<I DOCTYPE Article [

<IEntity % journalist.dtd SYSTEM "journalist.dtd">

% our nal i st. dtd;

1>

<Article> ... </Article>

When users create an entity with the XMetaL Author Tools menu, the declarations are placed in the document’s
internal subset. If the internal subset contains any declarations other than entity declarations, they are read-
only in Tags On and Normal views, and the entity-creation commands are unavailable.

J Note: Internal subsets in SGML documents are not supported.

Mapping identifiers

XMetal uses the OASIS catalog mechanism to associate an external identifier in a document type declaration
or external entity declaration with a DTD, rules file, or entity file. This mechanism can also be used to specify
an SGML declaration or associate an entity name with a filename.

You typically use the catalog mechanism in the following situations:

« If the document type declaration contains only a public identifier
« If the DTD or rules file is not stored in the Rul es folder

« If the system identifier in the document type declaration does not match the DTD or rules file that you want
to use

If XMetalL cannot resolve the external identifier using the catalog mechanism, it tries to resolve the external
identifier using the following methods, in the following order:

1. It attempts to find an entry in the external identifier map file, ext i d. map. This mechanism is provided for
backward compatibility with previous versions of XMetal, and can be disabled.

2. It attempts to retrieve the system identifier as a URL (relative to the document instance).

3. It attempts to retrieve the system identifier as a file path (relative to the document instance).

For the complete specification of the catalog mechanism, see OASIS Technical Resolution 9401:1997.

Catalog files

XMetal reads one or more catalog files, which can contain several types of entries. It reads these files until
it finds a matching entry. XMetaL supports a set of keywords that can be used in a catalog file.

BASE absolute-path . . ' .
Interpret relative paths in the catalog file as relative to absol ut e- pat h

instead of relative to the location of the catalog file (the default). For example,
a catalog file may contain these entries:

BASE " C.\ W ndows\ Appl i cat i ons\ Xmet aL"
SYSTEM "nydoc. dt d* " DTDs/ nmydoc. dt d"

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 41

http://www.oasis-open.org/html/a401.htm

Resolving catalog file entries

In this case, the full path for mydoc. dt d is
C. \ W ndows\ Appl i cat i ons\ XMet aL\ DTDs\ nydoc. dt d.
CATALOG catalog-file . . . ' .
g If a matching entry is not found in the current catalog file, search in
cat al og-fil e. If no matching entry is found there, return to the normal
catalog sequence.

DELEGATE partial-public-id If searching for a public identifier match, and parti al - publ i ¢c-i d matches

catalog-file _ _ .) !)
a substring of the identifier starting at the first character, search in
cat al og-fil e for a match and do not return to the normal catalog
sequence.

DOCTYPE

document-type-name If the Fiocument type declarajtlon specifies documrent - t ype- nane, then

filename use fi | ename as the DTD file.

ENTITY entity-name filename . .

Use f i | ename as the replacement text for the external entity

entity-nane.

LINKTYPE public-id filename . . .
P If the SGML document contains a LINKTYPE declaration that contains

public-id, thenusefil enane as the replacement text.

NOTATION notation-name
filename

OVERRIDE YES|NO

Use f i | enane as the content of the notation not at i on- nane.

If YES is specified, public identifiers and entity names are preferred to
system identifiers when attempting to find a match for an external identifier.
If NO is specified, and an external identifier contains a system identifier,
then the public identifier (if there is one) and entity name is be used when
attempting to find a match for the external identifier.
PUBLIC public-id filename
If an external identifier (for example, in an entity declaration or document
type declaration) contains the public identifier publ i c-i d, usefi | ename
to resolve the external identifier.

SGMLDECL fil
tename Use fi | ename as the SGML declaration for the SGML file.

SYSTEM system-id filename :
If an external identifier (for example, in an entity declaration or document

type declaration) contains the system identifier syst em i d,use f i | enane

to resolve the external identifier.

-- (comment notation) _ . . :
Declarations can contain comments, which start and end with a double

hyphen (--). For example:

-- Catalog entries for the Caracas project --

Resolving catalog file entries
Catalog file entries can be resolved using a public identifier, a system identifier, or an entity declaration.

42 Customization Guide

Catalog support for schemas

Using a public identifier

PUBLI C "1 SO 8879-1986// ENTI TI ES Added Latin 1//EN' "isolatl.ent"

The PUBLIC entry in the catalog associates the public identifier | SO 8879-

1986/ / ENTI TI ES Added Lati n 1// ENwiththe filenamei sol at 1. ent . This catalog
entry can be used to resolve the following entity declaration in a DTD:

<IENTITY %isolatl PUBLIC "I SO 8879-1986//ENTI TI ES Added

Latin 1//EN'>
% sol at 1;

When XMetalL encounters the % sol at 1 entity reference, it scans the declaration of

i sol at 1 and finds a public identifier. It then looks in the catalog file for a public entry
matching the same identifier. The filename specified in this entry (i sol at 1. ent) is then
used as the replacement for the entity reference.

J Note: Filenames can contain absolute or relative paths or URLSs. Relative filenames

are interpreted as relative to the location of the catalog file, unless the catalog file
contains a BASE entry.

Using a system identifier
SYSTEM "sqdoc. dtd* "sqdoc-xm . dtd"
Here, the system catalog entry associates the system identifier, sqdoc. dt d, with the

filename sqdoc- xni . dt d. This catalog entry is used to resolve the following document
type declaration:

<! DOCTYPE DOC SYSTEM "sqdoc. dtd">
When XMetal reads this declaration in an SGML or XML document, it finds the system

identifier, sqdoc. dt d, and looks in the catalog file for a system entry matching that
identifier. The filename found (sqdoc- xm . dt d) is used as the DTD file for the document.

Using an entity declaration

ENTI TY facel "c:\projectl\snallfaces\facel.gif"

The entity catalog entry associates the entity name, f acel, with the filename f acel. gi f .
When XMetal encounters a reference to the external entity, it scans the declaration of

f acel for a system or public identifier. It then reads the catalog file, looking for system or
public entries specifying these identifiers. If it does not find any such entry, it then looks
for a matching entity entry. The file f acel. gi f is used as the replacement for the entity
reference.

Catalog support for schemas

If you wish to use catalogs with schemas, you need to be aware of special syntax requirements both in the
catalog entry and in your schema.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 43

Finding catalog files

In order to support catalogs for schemas, you must set up your catalog for the public identifier. For example,
suppose your document looks like this:

<Article xm ns="AAA// BBB CCC// XM." >
</Article>

If you want to validate against Article.dtd or Article.xsd, your catalog file must have the following entry:

PUBLI C "AAA// BBB CCC/ / XM." "Articl e. xsd"

J Note: You must ensure that Article.xsd uses a TargetNamespace that is a fixed attribute of ‘xmins’.

Finding catalog files

By default, XMetalL uses the document name to find a catalog file. There is a default searching order. You
can also specify alternate catalog files.

For example, if the current document is called docnane. xm and it is located in the folder called docf | dr,
XMetal searches for the following files, in the following order:

docfl dr\docnane. soc (afile called docnane. soc in the same folder as the XML/SGML document)
docf | dr\ cat al og (afile called cat al og)

docfl dr\ cat al og. soc

Rul es\ cat al og (a file called cat al og in the Rul es folder)

Rul es\ cat al og. soc

o~ w DN PE

The root catalog may have links to other catalog files. You can specify alternate catalog files from within a
catalog file using the CATALOG and DELEGATE keywords.

A catalog file entry such as

CATALOG "cat al og2"

specifies an alternate catalog file. If XMetalL does not find a matching entry in the current catalog file, it reads
the alternate file. If no matching entry is found, XMetaL continues with the next catalog file in the normal
sequence. A catalog file can contain several CATALOG entries.

A catalog file entry of the form

DELEGATE public-id-prefix catal og-file

can be used if XMetal is currently attempting to match a public identifier, though PUBLIC entries take
precedence. If XMetaL encounters one or more DELEGATE lines (in a single catalog file) in which the public-
id-prefix matches a substring of the public identifier in question (starting at the first character) then XMetalL
looks for matching entries in the catalog files specified by the DELEGATE entries. It does not return to the
normal sequence of catalog files.

Giving priority to system or public identifiers

44

The system identifier (if there is one) in an external entity declaration is generally the actual name of the file
represented by the entity. Sometimes, however, this may not be the case, and the catalog mechanism provides
the option of using other means to obtain the filename.

If the catalog file contains a system entry matching the system identifier in question, then the filename specified
in that entry is used to resolve the entity reference.

Customization Guide

External identifier map file

If the catalog file contains the entry

OVERRI DE YES

and there is no matching system entry, then

« If the entity declaration contains a public identifier, and a matching public entry is found, the filename
specified in that entry is used to resolve the entity reference.

« If a matching entity entry is found, the filename specified in that entry is used to resolve the entity reference.
» Otherwise, the system identifier is used to resolve the entity reference.

If the catalog file contains the entry

OVERRI DE NO

and there is no matching system entry, then the system identifier is used to resolve the entity reference. In
this case XMetal does not attempt to match the public identifier or entity name.

An OVERRIDE YES or OVERRIDE NO entry is in effect until the end of the current catalog file, or until an
OVERRIDE entry with the opposite setting is encountered.

The default mode (YES or NO) is set using the QASI S_over ri de setting in the XMetal configuration file.
The default setting is true (YES).

External identifier map file
If the catalog cannot resolve a public identifier, XMetaL uses the external identifier map file for mapping the
external identifier in a document type declaration to the name and location of a DTD or rules file.

This external identifier map file is used in the following situations:

« If the document type declaration contains only a public identifier

« If the DTD, schema, or rules file is not stored in the Rul es folder

« If the system identifier in the document type declaration does not match the DTD or rules file that you want
to use

« If you want to use regular expressions to match a set of public or system identifiers and map them to a set
of filenames

The external identifier map file is, by default, ext i d. map. You can use a different file by specifying a value
for exti d_nmap in the XMetaL configuration file.

The external identifier map file consists of lines in this form:

public-id systemid DID/ rul esfile

The first two values are strings or patterns that match the public and system identifiers respectively. The third
value is the name of the DTD or rules file that these identifiers refer to. Here is an example:
"-//Justsystens//Book v1.0//EN' ! book.dtd

If you open a file whose document type declaration contains the public identifier - / / Just syst ens/ / Book
v1. 0/ / EN, XMetaL scans the external identifier map file until it comes to the line in the example. It sees that
the two identifiers match, and therefore it looks for book. dt d. The exclamation mark (!) is a special character

that means ‘match any identifier’, so in this example it does not matter what the system identifier is, or if one
is present.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 45

Creating an external identifier map file

L Note: You can disable the external identifier map mechanism by settinguse_ext i d_mappi ngtof al se

in the XMetaL configuration file.

Creating an external identifier map file

46

Map file entries can specify a public identifier, an alternate DTD or rules location, or they can map one system
identifier to another.

XMetal needs to refer to the external identifier map file, ext i d. map, only when the document type declaration
does not have a system identifier that is the same as the filename of a DTD or rules file stored in the Rul es
folder.

Using a public identifier only

For SGML documents, the document type declaration may contain only a public identifier:

<DOCTYPE BOCOK PUBLI C "-// XMet alL// Book v1.0//EN'>

If you want the DTD or rules file to be identified by the public identifier only, you should include an entry similar
to the following in the external identifier map file:

"-// XMetaL// Book v1.0//EN' ! book.dtd

This matches book. dt d to the public identifier, regardless of whether the system identifier is present, or
what it is.

J Note: XML external identifiers must contain a system identifier.
Using an alternate DTD or rules location

If you store your DTD, schema, or rules file somewhere other than the Rul es folder, you need to tell XMetalL
the location.

You can put the rules file location in the document type declaration explicitly:

<DOCTYPE BOOK SYSTEM " C:. \ DTDs\ book. dt d" >

Alternatively, you can use the external identifier map file, ext i d. map, to point to the location of the DTD or
rules file.

"-//Justsystens//Book v1.0//EN' ! "C:./DTDs/book.dtd" ! "book.dtd" "C:./DTDs/book. dtd"

The first example maps a public identifier to a DTD; the second maps a system identifier to a DTD. You can
use either form.

Mapping one system identifier to another

If the system identifier specifies dt dnane. dt d, XMetaL looks, by default, for the rules file dt dnane. r | x or
dt dnane. r | s. If the system identifier does not correspond to the desired DTD or rules file in this way, you
must create an entry in the external identifier map file.

The system identifier in the document type declaration may specify a DTD name, as in this example:

<DOCTYPE BOOK SYSTEM " book. dt d" >

Customization Guide

Language support

For example, if you want to use the rules file r eal book. r | x, instead of book. r | x, you can either change
the document type declaration to refer to the rules file or create an entry in the external identifier map file that
tells XMetalL which rules file corresponds to the DTD name.

L Note: If the document type declaration contains a reference to a rules file (instead of a DTD), the

document type declaration no longer conforms to the XML specification.
To map a public identifier to a file name, use an entry like this example:
I "book.dtd" "real book.rl x"
If you use several rules files, and there is a regular correspondence between DTD names and rules file names

(other than the default correspondence between . dtd and . rl x or. rl s files), you can map them all using
one entry.

For example, if you use names of the form anyt hi ng. dt d for all your DTD file names, and call the
corresponding rules files anyt hi ng. r ul es, the following line in the external identifier map tells XMetaL to
use the rules file that corresponds to the DTD (regardless of whether the public identifier is present, or what
it is):

I (.*)\.dtd \1.rules

Language support

XMetal supports multi-language documents that you can spell-check in a desired language. You can specify
a language in the xml:lang attribute for elements in the DTD. By default, the value of the xml:lang attribute
for an element is inherited from its parent.

For information on specifying languages in XML, see the W3C website.

Example

Suppose <TopLevel > is the top-level element. If the default language is American English,
the attribute list needs to include the following:

<! ATTLI ST TopLevel
xm : | angNMIOKEN" en- us"
>

To allow an element to override the default language, add the following attribute:

<! ATTLI ST Para
xm : | angNMIOKEN#1 MPLI ED
>

SGML declaration

An SGML declaration contains information about the character set, markup delimiters, quantity settings, and
special markup features.

If your DTD exceeds the defaults for such quantities as the length of an element or attribute name, or you
want to turn on an optional feature such as tag minimization, you must specify the desired values and features
in your SGML declaration. There is no need to use an SGML declaration with DTDs for XML files.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. a7

http://www.w3c.org

SGML declaration

You can provide an SGML declaration in the following ways:

« If there is a file dt dnanme. dec or dt dnane. dcl in the same folder as the DTD dt dnan®e. dt d, it is used

as the SGML declaration for all files that use that DTD

* You can specify an SGML declaration when you compile a rules file

In XML files, XMetaL writes element, attribute, and entity names in the case that matches their declarations

(upper, lower, or mixed).

In SGML files, element and attribute names are written in uppercase if the NAMECASE, GENERAL parameter
is set to YES (the default). If it is set to NO, elements and attributes are written in the case they were declared
in. Entity names are written in the case they were declared in if the NAMECASE, ENTITY parameter is set

to NO (the default). If it is set to YES, they are written in uppercase.

For more information on SGML declarations, see the Cover Pages website.

Sample SGML declaration

<ISGWL "1 SO 8879: 1986"

-- Copyright Justsystens, 2006 --

CHARSET

BASESET " | SO 646- 1983/ / CHARSET | nt er nati onal Reference
Version (IRV) //ESC 2/5 4/0"

DESCSET

09UNUSED

929

11 2UNUSED

13 113

14 18 UNUSED

32 95 32

1271 UNUSED

BASESET "I SO Regi strati on Nunber 109// CHARSET
ECMA- 94 Right Part of Latin Al phabet Nr. 3//ESC 2/ 13 4/3"
DESCSET

12832 UNUSED

160532

16589 32

2541127

2551 UNUSED

CAPACI TY PUBLI C

"1 SO 8879- 1986/ / CAPACI TY Ref erence//EN'

SCOPE DOCUNMENT

SYNTAX

SHUNCHAR NONE

BASESET" | SO 646- 1983/ / CHARSET | nt ernati onal Reference
Version (IRV) //ESC 2/5 4/0"

DESCSET

01280

FUNCTI ON

RE10

RS13

SPACE 32

NAM NG

LCNMSTRT "'

UCNMSTRT "'

GENERAL SGMLREF
SHORTREF SGWLREF
NAVESSGWLREF
QUANTI TY SGWMLREF

48

Customization Guide

http://xml.coverpages.org

Attribute description files

NAMELENG4

LI TLEN2048
FEATURES

M N M ZE
DATATAGNO
OM TTAGNO
RANKNO
SHORTTAG YES
LI NK

SI MPLENO

I MPLICI T NO
EXPLICI T NO
OTHER
CONCURNO
FORMALNO
APPI NFONONE
>

Attribute description files

An attribute description file contains descriptions of attributes. These are displayed at the bottom of the
Attribute Inspector when you click an attribute name in XMetalL Author.

The attribute description file consists of entries of the form:

El enent Attribute "Help String"

This example supplies a help string for the SECURI TY attribute of PARA:

Para Security "Security |evel"

Attribute description files can be used with DTDs or compiled rules files. The attribute description file should
be in the same folder as the DTD (by default, the folder Rul es) and it must have the same name as the DTD
and the extension . att .

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 49

Forms

Forms provide a way to control content and simplify the content creation process for users of your XMetalL
customization. You can create forms and integrate them in your customization using the XMetalL Forms
Toolkit (XFT). Through forms, you can exchange data with your own XML documents or with an external
database.

Using forms, you can control what information users enter into an XML document, thereby standardizing
information and reducing entry errors. You can also hide the details of XML markup from the user, making
the job of entering content easier.

The XMetalL Forms Toolkit is designed to work seamlessly with XMetalL. It provides the tools to create forms
that can be run from within XMetaL either as modal dialog boxes or embedded within a document. In addition,
you can create forms that are bound to XML content, such as elements and attributes, and apply business
logic via scripting.

You create forms within the Form Layout Editor, which is an integral part of XFT. Your forms contain controls,
which have certain properties and events assigned to them. When you create a form, you drag control objects
from the Object Bar onto the workspace and modify their properties through the Property Sheet. The set of
tools allows you to precisely position the objects.

Form filename extension

By default, forms are saved with the . xft extension. For easy access, save your forms in the
.. \ XMet aL\ For ns folder.

Testing forms

You can test and de-bug your forms in the Form Layout Editor by clicking View > Execute Form.

Script events

You can define specialized behavior for objects using JScript and VBScript events. All objects have the
following events:

« Onlnitialize
* OnTerminate
» OnClick

There are also a number of optional events that may be linked in:

» OnDbIClick

¢ OnMouseDown

* OnMouseMove

¢ OnMouseUp

« OnDragOver (You must set "Effect = 1" to enable OnDragDrop.)
* OnDragDrop

e OnBlur

* OnFocus

XMetalL Developer 19.0 © 2024 JustSystems Canada Inc. 50

XMetalL Forms Toolkit

Interfaces

All form objects, including the form background and frame, have properties. For more information, see the
XMetal Programmer’s Guide.

Content mapping model

You can use XFT-specific script events, properties, and methods to transfer data between an XML document
and a form. For more information, see the XMetaL Programmer’s Guide.

XMetaL Forms Toolkit

The XMetaL Forms Toolkit (XFT) includes an easy-to-use interface for creating and testing forms, a data
source control for binding data from a database to your XML document, and a wizard that lets you associate
a form with an object in your customization.

Form Layout Editor

The Forms Layout Editor is included in the XMetaL Forms Toolkit. You use this tool to create and edit forms
for your customization. You can use the interface provided to position controls and determine their behavior.

By default, the Form Layout Editor is installed at . . \ XMet aL\ Devel oper\ bi n\ XFLayout . exe.

ijMetaL Forms Layout Editor - Form 1:Layout 10l =l
File Edit Wiew Layvout Draw Window Help

H DSH| =8 S 7
|[Mssamsser — =|F <[B 2|
H|1nnz =] | @ | o Defaut =]

;H__'JI Form 1:Layout

L | i

Property Sheet

[TheFrame/Theview i I i

Formal | Events

|
[FormCode) =
BorderStyle 1 - Resizing
Color B Automatic
CurzorPointer 0 - Default
Font M5 Sang Serif
Height 297
HelpContestlD 0
td aximizeB ox 1-Yes
tinimizel ox 1-Yes
PrintScale 1
ScrollBars 0-Mo
ScrolHeight 200
Scrollwidth ER
Tag
Title Form 1
ToolTipT ext
Wiewlayers
‘WhatzThisHeln M-MNn LI

St - [- 35 - [- g -

Ready 0,0 [356x297 4

K7

s =€ &8EaFo- maw

XMetaL Developer 19.0 © 2024 JustSystems Canada Inc. 51

XMetalL Forms Toolkit

52

Object Bar

The Object Bar appears by default in the Forms Layout Editor interface. It contains all of the objects that you
can use on your form. You can add objects to your form by clicking and dragging.

Table 9: Object Bar

Control Description

A Static (non-editable) text

N Line drawing tool

7 Freehand drawing tool

", Connector
O Rectangular border drawing tool

=~ Elliptical arc drawing tool

'S Ellipse drawing tool
] Multi-purpose frame to group objects (with heading text)
Bitmap

A Highlight

= Button with pre-defined action

I Check box

& Radio button set
ET Combination text box and pull-down list
=g List box with scroll bar
| Edit control for all variables (text box)
[ER Multi-line edit control for all variables (multi-line text box)
] ActiveX control
I?I: Data Source control

Form design tips

You can create controls that dynamically resize or reposition themselves when a form is resized using the
Fl exHori zont al and Fl exVerti cal properties. For buttons, text, check boxes, and radio buttons, and
other controls that should not change size, specify a value of 1 (Shift). In order to allow the user to take
advantage of extra space created by a newly expanded form, specify a value of 2 (Expand) for controls such
as edit boxes and multi-edit boxes. For more information, see the XMetal Programmer’s Guide.

Customization Guide

Create a form

Create a form

You create forms using the Form Layout Editor. The process includes choosing a scripting language, adding
objects, and specifying properties. After you have finished, you can associate the form with an object in your
customization using the XFT Form Wizard.

1. In the XMetalL Form Layout Editor, click File > New and choose a scripting language.

Choose Script Language for Form

oK

x|
ok |
Cancel |

Mote: IF a zonipt language doesn't appear in the list, uge a text editor to
check that the script lanquage has a format specification entered in the
"soriptFormatters.cfg” data file. Otherwise, refer to the documentation,

Script Langquage: |[JScript j

2. Click OK.
3. Add controls to your form by clicking and dragging objects from the Object Bar.

"& Form 1:Layout . -0

4. Edit the object properties as necessary in the Property Sheet.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 53

Binding a form to XML content

i ITexl2 j J
ormal | Events |
| [ObjectCode] Text2] e
10 Save Az Default
Riight 170 [Clean Default
Top il Lelete
Bottom 100
CursorPointer 0-Defau, Saort
ToolTipT ext
Enable 1-Yes
Wisible 1-Yes
HelpContestlD 0
BackCalor S5 il j

5. Click Layout > Objects and set the tab order.
6. Click View > Script Editor.
7. Select the object in the left drop-down list and an event in the right drop-down list and type scripts as

necessary.
E:Furm 1:Code =101z
Iﬁl: El El IFilstName j IEventChange j
. function FirstName EventChange ()

+

8. Click File > Save.

Binding a form to XML content

You can bind controls in your form to elements and attributes by specifying an XPath property. You can then
use the XFT Form Wizard to associate a form with an object in your customization.

XPath syntax is similar to filesystem syntax. In XPath, element nodes are indicated with a slash character
(‘). XMetaL supports a subset of XPath expressions.

Table 10: Supported XPath expressions

Expression Refers to

Anchor element

./ @ttribut enanme Attribute of the anchor element

54 Customization Guide

Binding a form to XML content

Expression Refers to

./ chi | del ement nane Child element

./ chil del ement name/ @t tri but ename Attribute of child element
Example

Here, you will bind the control for the First Name edit box in a form to the Fi r st Nane
element. The Author element is the anchor element for the form.

Consider the following document structure:

Author {ID attribute)
irstName

urname
Adﬁss
ity

The document specifies an Aut hor element with child elements called Fi r st Nane,
Sur nane, and Addr ess. .

To indicate that the First Name control is bound to the element Fi r st Nane, the XPath
expression . / Fi r st Name is entered in the XPath property.

Property Sheet

EditBox1 2 i
Marmal | Events I

DataField |

DataSource

Enahble 1-Tes

FlexHaorizantal - Mone

Flesdertical - Mone

Fant [Mane]

FareColar B0 Automatic

Group 0-MNa

HelpCaontext D 0

HelpHatEutton 0-MNa

Layer Drefault

Left 80

ReadOnly 0-MNa

Right 240

Tabstop 1-Yes

Tag

Text

ToolTipT ext

Top 10

UzeCalorz 1-Tes

WaluelD [Mane]

*izible 1-Tes

) Bz i

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 55

External data

Special considerations

If the underlying document contains any element nodes that do not exist in the base XML document, XFT
displays the form with the element and allows the content to be entered. However, your document is not
populated with the data.

For controls that have an XPath property defined, the underlying XML document requires that the element
resolved by the XPath property already be created before XFT sets that element’s content as node-type
NODE_TEXT. The sample form Aut hor . xft demonstrates how to create elements before XFT transfers
the form control data to the XML document.

XFT supports only DOM node-type NODE_TEXT. If other DOM node-types are required, use the
OnXftPutFormToDoc script hook to create your data. If the DOM node resolved by an XPath property has
child nodes or other node-types in its content, XFT replaces that content with NODE_TEXT data from the
form control or XmlIValue property. To create this functionality, use the Tag property. The Tag property can
be assigned to all object types, such as DOM nodes, text strings, and numbers. You can assign the Tag
property to a result and later retrieve the result from the macro that invoked the XFT dialog box. Any type of
data can be assigned to the Tag property and retrieved by script elsewhere, such as in an XMetaL macro.

External data

56

You can exchange data with an external data source through your form. The Data Source object must be
added to any form that uses external data sources.

You can add a Data Source object from the Object Bar.

E’EJIFnrm 1:Layout - |EI

This form control object is visible during design time, but invisible at run time.
External data can be connected to the following objects:

* Text boxes
« Edit boxes

Customization Guide

Connect to an external data source

» List boxes
+ Combo boxes

e Note: In order to have a way to move to from row to row in the data source, your list must include at
least one drop down or list box.

Connect to an external data source

You can connect a Data Source object in your form to an external data source through the data source
selection wizard. You then set the Data Field and Data Source properties for the object.

1. Drag the Data Source object onto your form.

2. Inthe Data Source property sheet, click in the text area to the right of the Source property to start the data
source selection wizard.

Property Sheet
DataSourcel j [~ 1Bu
Harmal |
DataSourcel ;I
Source

3. Inthe Select DSN list, locate and click the data source.
4. Type the User ID and Password for the data source if these are required.

XFT Datasource Selection Wizard x|

What D5HN to use?
Pleaze select DSM, user name and pazsword .

Select DSH:
dBASE Files
dBaze Files - word
DeluxelD
ECDCMusic =l
User ID: ISEi
Paszword: |
< Back I Ment » I Cancel
5. Click Next.

The data for the field you selected is displayed on this page of the wizard.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 57

Associate a form with a customization object

XFT Datasource Selection Wizard |

What data to use?
Thiz iz the data pou have chogen ..

logint ane
alewel
bogdan
bporter
|butchart
limpet
mirdy
peter
zal
schau
test

< Back I Finish I Cancel

6. Click Finish.
7. Click the control for which you want to select a data source field.
8. Set the DataField and DataSource properties.

LUrEarEoineer U - LIErauin | ‘

DataSource

Feabla

Associate a form with a customization object

You can associate a form with an object in your customization using the XFT Form Wizard.

In the Solution Explorer, select an object in your customization that you want to associate with a form.
In the Advanced Display Type property, select XFT Form.

Click Setup.

Type the path and name of the form.

Select an option to determine how XMetaL will run the form.

(Optional) If you chose to run the form as an Embedded form, select an option to determine how XMetalL
will display the form.

In most cases, you will want to select Replace Content; however, there may be times when you want to
preserve content that is related to the data entered on the form. In these cases, select Before Content or
After Content.

L e oA

7. Select an option to indicate when XMetal is to display the form.

Executing a form as a modal dialog in XMetalL

You can run a form as a modal dialog in XMetaL by using a macro.

58 Customization Guide

Sample forms

The macro shown here uses the Appl i cat i on. Cr eat eFor nDl g method to call the form nyf orm xft:

<MACRO narme=" RunFor nf

| ang="JScript">

var dl g=Application. CreateFornD g("C\\nmyformxft");

dl g. DoModal () ;
dl g=nul | ;
</ MACRC>

Sample forms

Sample forms are located in . . \ XMet aL\ Aut hor\ For s .

Table 11: Sample forms

Name

Description

Annotation.xft

Author.xft

Comment.xft

LIstOfComments.xft

PubDate.xft

ULink.xft

XMLtoPDFSetup.xft

This form is called by the Insert Annotation macro. It is an
interface for editors and reviewers to provide initialed
annotations to a document that is based on the Journalist
DTD. It contains no special scripts and is not bound to any
content.

This is an embedded form for the Journalist DTD. It is an
interface to enter or change author information in a
document. It contains object events script, and is bound to
XML content.

This form is called by the Insert Comment macro. It is an
interface for editors and reviewers to provide comments to
a document that is based on the Journalist DTD. It contains
no special scripts and is not bound to any content.

This form is called by the ListAllComments macro. It is an
interface to view comments added to a document that is
based on the Journalist DTD. It contains no special scripts
and is not bound to any content.

This form was set up as a modal dialog box. It is an interface
to enter or change the publication date of a document based
on the Journalist DTD. It contains object events script for
the OnXftPutXmlValue and OnXftGetXmlValue functions,
and is bound to content in the document.

This form is called by the Insert ULink macro. It is used to
create a URL link from text selected in a document based
on the Journalist DTD. It contains no special scripts and is
not bound to any content.

This form is called by the XMLToPDF macro. It is used to
initialize and configure the PDF print engine. It contains no
special scripts and is not bound to any content.

XMetal Developer 19.0

© 2024 JustSystems Canada Inc. 59

Editor display styles

You can control how XML and SGML documents appear in XMetal Author and XMetal. XMAX using cascading
style sheets (CSS). When you create a customization, two CSS files are created. Style rules from these files

is compiled in the XAC file when you build your customization.

Table 12: Default CSS files

Name UseAs type Description
{dtdname}.css CSS styles file for Normal view The default display styles
{dtdname}_structure.css | CSS styles file for Structure view Overrides or adds to the default styles

The default files contain selectors and style properties for each element in your DTD or schema. You can
modify the style rules in the CSS editor or in a text editor. You can also add existing CSS files to your
customization to use instead of the default files. However, if you choose to do this, you must specify the
UseAs type accordingly.

For details on using XSLT to transform documents for previewing, see the section on Formatting Object
methods in the XMetaL Programmer's Guide for details.

CSS specifications are available on the World Wide Web Consortium website at www.w3c.org.

CSS editor

You can edit CSS files through the CSS editor.

The cascading style sheet editor contains the following areas:
» Selectors area. Lets you create, delete, sort, and choose selectors.
 Style Rule area. Displays the style rule for the current selector and lets you edit it.

« Sample Text area. Formats the text according to the style rule.
* Properties area. Lets you create style rules.

XMetalL Developer 19.0 © 2024 JustSystems Canada Inc.

60

http://www.w3c.org/

Creating selectors

[

[

t Pane

sgdocxml.css [Form]*

I™ Sort Selectars

DEFLIST

def

RAMDLIST

LT

SEQLIST

TBODY
TABLE=TITLE
ARGMNAME
FUMCNAME
ARGDESC
ARGTYPE
BOOKMARK

BR.

BLITTON

CHP

CMD

COLSPEC

COoM

L

margineft: 12px;
margin-bottom: 10px;
display: list-item;
text-align: left;
font-size: 12pt;
font-style: normal;

Lo

f=

Edges | 3= Other] oy Extensions]

Font Family: Font Color:

| L] |inherit jl Custom

Font Size: Font Weight (bold):

| 12 ||:|t (poinis)j |inherit j

Font Style (italic): Font Variant (small caps):

|nnrmal j |inherit j

Text Align: Text Decoration

|IE1"t ﬂ [none [overline

E— [underline [line-through
St ndent: ™ dblunderline [~ dbl overline

| inherit j

Vertical Align: Background Caolor:

|default ﬂ |defau|t j | Custom

This is approximately what this element will look like. There will be

some differences due to the default properties that the various

browsers use for this element, to style properties that may be set in

other rules that apply to this element, and also to the style properties of -

RS, IR [P, . [S ——

You can create a new selector by clicking B Create new CSS selector or K Create new CSS selector
with properties of selected Selector.

You can remove a selector by clicking * Delete selector from the list

You can change the order of the selectors by clicking 4 Move up or & Move down.

Creating selectors

A selector is an expression with which you can associate a style property. You can create selectors through
the Selectors area of the CSS editor.

A selector can represent the following, or any combination thereof:

* Elements
« Attributes

» Pseudo-elements and pseudo-classes

» XMetaL-specific keywords

By default, selectors appear

in the list according to the order in which they were created, with the XMetal-

specific selectors first, followed by a list of the elements defined in the DTD or schema, and finally by any
selectors that you create. However, you can change this order when you create or edit selectors by clicking

the up and down arrows.

XMetal Developer 19.0

© 2024 JustSystems Canada Inc. 61

Creating selectors

Selector syntax

For a description of selector syntax, see the CSS specifications on the World Wide Web Consortium website
at www.w3c.org.

Simple selectors
The following example causes all Title elements to appear in blue:

TI TLE {col or: bl ue; }

Pseudo selectors
The following rule causes all first-child elements of a section to appear in boldface:

SEC. first-child {font-weight:bold;}

Child selectors
The following rule applies to all title elements that have book as a parent:

BOOK>TI TLE {col or: bl ue; }

Attribute selectors
The following rule causes all emphasis elements with the role bold to appear in blue:

EM rol e="bol d"] {col or: bl ue;}

Sibling selectors

The following rule specifies the color blue for all paragraph elements:

P {col or: bl ue;}

The following rule, causes all paragraphs immediately preceded by a paragraph to appear
in red:

P+P {color:red;}

The result of these rules would be that the first paragraph appears in blue and all
subsequent paragraphs appear red.

Class selectors
The following rule causes all titles with the class news to appear in red:

TI TLE. news {col or:red;}

Descendant selectors
The following rule causes all titles that are child elements of a book to appear in blue:

BOCOK TI TLE {col or: bl ue;}

62 Customization Guide

http://www.w3c.org/

XMetal -specific selectors

XMetalL-specific selectors
In a new CSS file, XMetaL Developer automatically populates the list with XMetaL-specific selectors, which
let you take advantage of specific XMetaL functionality. In the list of available selectors, these appear first
unless you change the order.

Table 13: XMetalL-specific selectors

Name Description

$DOCUMENT Applies styles to an entire document. All other selectors
inherit the styles set for this selector unless different styles
are set specifically for subordinate selectors.

$MARKSEC Applies styles to any marked sections in SGML documents
or CDATA sections in XML documents.

$COMMENT Applies styles to comments within an XML or SMGL
document.

$PROCINS Applies styles to processing instructions within an XML or

SGML document.

@ Note: Visual Studio .NET returns an unexpected character sequence error for each of the proprietary
XMetal -specific keywords. Also, if you build your project with the View Code window open, errors these
keywords are listed in the task list but the file is copied into the build.

Styling processing instructions

You can style processig instructions using the $PROCINS keyword and the following qualifier names:

Xm pi -target
Xm pi -dat a
Xm pi -t arget

Normal CSS cascading rules apply.

Examples

The following rule hides all occurances of any Pl with a target called ‘print’:

$proci ns[xm pi -target="print"] {display:none}

The following rule hides all occurances of ?print page-break?:

$proci ns[xm pi -target="print"][xm pi - dat a="page- break"] {displ ay: none}
The following rule colors all Pls with a data value of ‘index-start’ using blue text:

$proci ns[xm pi -dat a="i ndex-start"] {col or: #0000f f }

The following rule styles all replacement text Pls in green:

$PROCI NS[xm pi -t arget ="xmrepl ace_text"] {color: green;}

Create a selector
You can create a blank selector or copy style rules from an existing selector.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 63

Custom selectors

1. Open a CSS file through the Solution Explorer.
2. Do one of the following:

* Click I Create new CSS selector.

* Inthe Selectors list, click the name of the selector whose style rules you want to copy. Click = Create
new CSS selector with properties of selected Selector.

3. Choose a type of selector.

4. From the Select Element list, select the name of the element to use as the selector and click >.

5. If you want to create a single style rule to apply to all selectors in the Selectors to be created list, click the
Add as a grouped selector option.
L Note: New selectors must have style rules associated with them before the cascading style sheet
editor is closed or they will not be saved in the Selectors list.

Custom selectors

The Custom option in the CSS editor lets you type a custom selector. Style rules that you create with custom
selectors may not be visible in XMetaL Author or XMetaL XMAX.

Some possible uses for custom selectors include the following:

 To specify a namespace so that similarly-named elements from different DTDs or schemas can have
different formatting information

« To add an ‘@import’ statement to import rules from another style sheet into the current style sheet

e Note: Styles in an imported style sheet have lower precedence than styles in the current style sheet.

Namespace-aware selector

The following rule causes all emphasis elements in namespace my_ns to be styled in
boldface:

ny_ns|em {font-wei ght: bold;}

@import statement
The following statement imports the rules from the CSS file mystyles.css:

@nport url ("nystyl es.css")

Setting style properties

64

You can edit the properties of your style rules through the CSS editor. The Properties area lets you select

options to set properties, or you can type properties directly in the Style Rule area. By default, many properties
inherit their value from parent and ancestor elements.

The Properties Area of the CSS editor contains four tabs that show the properties that can be displayed in
XMetal. You can set these properties by clicking the tab and moving to the appropriate section.

Customization Guide

Extensions properties

Table 14: Properties

Click this tab: To edit:

Text Fonts, text alignment, and indent

Edges Margin, padding, and borders

Other Miscellaneous properties, including classification,

whitespace, and counters

Extensions XMetal-specific properties, including indent, prefix, and
view settings

You can also add other properties by editing the text in the Style Rule area. However, these properties may
not be visible in XMetalL.

For descriptions of CSS properties see the World Wide Web Consortium website at www.w3c.org.

Extensions properties

The Extensions tab in the CSS editor contains XMetalL-specific properties. The properties on this tab are not
part of the CSS specifications, and can be viewed only in XMetalL.

Left indent

Use this property to display the element(s) indicated at a set distance from the left margin, regardless of the
position of any ancestor element.

Prefix options

Use this property to displays prefix text, the attributes of an element, or the parameters and parameter entities
of a marked section (in Tags On view only). You can set the following prefix options:

» To set a rule to display prefix text, type the desired text

» To set a rule to display all attributes with non-null values for the element(s) to which the style applies, type
[Y%attribute-list;]

« To set a rule to display the value of a specific attribute for the element(s) to which the style applies, type
[Y%attri bute ATTRI BNAME;], where ATTRIBNAME is the name of the attribute whose value you want
to display

« If you are creating a display rule for marked sections, you can choose to display marked-section parameters
and parameter entities by typing [%par anet er s; |

Structure view options

Use these properties to control the behavior of the Structure View. You can set the following options:

» Show +/- to display the expand and collapse icons
« Show icons to display page and book icons
« Show start tags to display a start tag at the beginning of each element

View support for properties and selectors

The tables below indicate XMetalL Developer and XMetaL Author display support for CSS properties and
selectors.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 65

http://www.w3c.org/

View support for properties and selectors

66

Table 15: Assigning property values, cascading, inheritance

Name XMetal Developer CSS XMetalL Author Normal XMetal Author Structure
Editor Preview View View

‘@import’ rule X

‘inherit’ value -

Table 16: Font properties

Name

XMetal Developer CSS
Editor Preview

XMetaL Author Normal
View

XMetalL Author Structure
View

font

font-family

font-style

font-variant

font-weight

font-size

X | X | X | X| X| X

X | X | X| X| X| X

X | X | X| X| X| X

Table 17: Color and background properties

Name XMetal Developer CSS XMetalL Author Normal XMetalL Author Structure
Editor Preview View View

background X X X

background-attachment - - -

background-color X X X

background-image

background-position

background-repeat

Table 18: Text properties

Name XMetal Developer CSS XMetalL Author Normal XMetalL Author Structure
Editor Preview View View

color X X

text-indent X X

text-align X X -

text-decoration

X (except double-overline
and double-underline)

X (except double-overline
and double-underline)

X (except double-overline
and double-underline)

letter-spacing

word-spacing

text-transform

vertical-align

sub and super only

sub and super only

line-height

Customization Guide

View support for properties and selectors

Table 19: Box properties

margin-top, margin-right,
margin-bottom, margin-left

padding
padding-top, padding-right,

padding-bottom, padding-left

Name XMetal Developer CSS XMetalL Author Normal XMetal Author Structure
Editor Preview View View

border, border-top, border- X X X

right, border-bottom,

border-left

border-color X X (only when set to the same | X (only when set to the same

value for all sides) value for all sides)

border-top-color, border- X X (only when set to the same | X (only when set to the same

right-color, border-bottom- value for all sides) value for all sides)

color, border-left-color

border-style

border-top-style, border-

right-style, border-bottom-

style, border-left-style

border-width X X (only when border-xxx- X (only when border-xxx-
width are set to the same width are set to the same

value) value)

border-top-width, border- X X (only when set to the same | X (only when set to the same

right-width, border-bottom- value) value)

width, border-left-width

clear - - -

float X X -

height - - -

width - - -

margin -

Table 20: Classification properties

Name XMetal Developer CSS XMetalL Author Normal XMetalL Author Structure
Editor Preview View View
white-space X (for ‘nowrap’ only) X -
display - X -
list-style - X -
list-style-type - X -
list-style-position - - -
list-style-image - - -
XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 67

View support for properties and selectors

68

Table 21: Generated content, auto-numbering, and list properties

Name

XMetal Developer CSS
Editor Preview

XMetaL Author Normal
View

XMetalL Author Structure
View

content: <string>

X

content: <uri>

content: <counter>

content: attr(X)

counter-increment

counter-reset

X | X | X | X

X | X | X | X

X | X | X | X

Table 22: Positioning properties

Name

XMetal Developer CSS
Editor Preview

XMetalL Author Normal
View

XMetalL Author Structure
View

position

top

right

bottom

left

width

height

clip

overflow

z-index

visibility

Table 23: Other properties

Name

XMetal Developer CSS
Editor Preview

XMetal Author Normal
View

XMetalL Author Structure
View

@media

direction

unicode-bidi

X
X

x| X

min-width

max-width

@page

page-break-before, page-
break-after

page-break-inside

orphans

widows

border-collapse

Customization Guide

Using counters and autonumbering

Name

border-spacing
caption-side
table-layout
empty-cells
cursor

outline
outline-width
outline-style

outline-color

XMetal Developer CSS
Editor Preview

XMetal Author Normal
View

XMetal Author Structure
View

Table 24: Selectors

Type

XMetal Developer CSS
Editor Preview

XMetalL Author Normal
View

XMetaL Author Structure
View

Grouping

Universal Selectors

Type Selectors
Descendant Selectors
Child Selectors

Adjacent Sibling Selectors
Attribute Selectors

Class Selectors

ID Selectors
Pseudo-Classes

Pseudo-Elements

X | X | X| X| X| X| X| X

first-child only

:before and :after only

X| X X| X| X| X| X| X

first-child only

:before and :after only

X | X| X| X| X| X| X| X

first-child only

:before and :after only

Using counters and autonumbering

A counter is an element prefix that is incremented for each successive occurrence of that element. You can
create counters in your document using pseudo-selectors and counter properties.

You can add simple or multi-level counters to elements in your document. For example, chapters in a document
may be numbered 1, 2, 3, etc. and subsections of a chapter may be nhumbered 1.1, 1.2, ..., 2.1, 2.2, ..., etc.
A counter can be initialized to start at a specified value and various numbering styles are available.

Counters are displayed in : bef or e and : af t er generated text by using the count er and count ers
functions. They are configured using the count er - i ncr ement and count er - r eset properties.

XMetal Developer 19.0

© 2024 JustSystems Canada Inc.

69

Using counters and autonumbering

Simple counter

The following rule associates a counter with the Sect 1 element and gives this counter
the name ‘sectionl’, so that it can be referred to elsewhere in the style sheet.

Sect 1l {
counter-increnment: sectioni;

}

Displaying a counter

The following rule displays the counter at the start of the Sect 1 element, but it is more
common to display the counter before an element’s title (if there is one):

This rule displays the counter at the start of the Sect 1 element, but it is more common to
display the counter before an element's title (if there is one):

Sect 1>Titl e: before {
content: counter(sectionl);

}

You can include text before or after the counter. For example, the following rule displays
1., 2., ... before the titles:

Sect 1>Titl e: before {
content: counter(sectionl) ". ";

}

Resetting the numbering
The following rules reset the number for each new list:

Item zedLi st {
counter-reset: li;

}
Listltem{
counter-increnent: |i;

Listltem before {
content: counter(li) ". *;

}

Initializing counters
The following rule resets the counter to 5:

Sect1 {
counter-increnent: sectionl;
counter-reset: section2 5;

}

70 Customization Guide

Formatting elements as tables

Multi-level counters

The following rules define two counters, sectionl and section2. The count er - r eset
property in the Sect 1 rule means reset the counter called section2 to zero whenever a
Sect 1 element is encountered.

Sect1 {

counter-increment: sectionl;
counter-reset: section2;

}
Sect 1>Titl e: before {
content: counter(sectionl) ". ";

}
Sect 2 {
counter-increnent: section2;

}
Sect 2>Titl e: before {
content: counter(sectionl) "." counter(section2)

}

Numbering styles
The following rules specify upper - al pha and | ower - r onan style counters:

Sect 1>Titl e: before {
content: counter(sectionl, upper-alpha) ". *;

}

Sect 2>Titl e: before {

content: counter(sectionl, upper-al pha)
counter (section2, | ower-roman) ". ";

}

Formatting elements as tables

Using CSS, you can format other groups of elements as tables, provided they have a tabular structure. These

elements are sometimes referred to as semantic tables.
A tabular structure must have these components:
* An enclosing element, which can be formatted as a table

» A child of the table element, which can be formatted as a table row
« A child of the table row element, which can be formatted as a table cell

Example

This element has the following structure:

<Vari abl eLi st >

<Var Li st Entry>
<Ternp...</Ternp
<Listltenp...</Listltenr
</ Var Li st Entry>

<Var Li st Entry>

</ Var Li stEntry>

</ Vari abl eLi st >

XMetal Developer 19.0 © 2024 JustSystems Canada Inc.

The Vari abl eLi st element in the sample journalist DTD can be formatted as a table.

71

Example style rules

Through the CSS display property (in the Other tab), you can format Var i abl eLi st as
atable, Var Li st Ent ry as a table row, and Ter mand Li st | t emas table cells. The
following rules are used to format Var i abl eLi st as a table:

Vari abl eLi st {
di spl ay: table;

Var Li stEntry {
di spl ay: table-row,

}
Var Li st Ent ry>Term {
di splay: table-cell;

}
Var Li st Entry>Li stltem {
di splay: table-cell;

(In this case we specify styles for Ter mand Li st | t emwhen they occur as sub-elements
of Var Li st Ent ry, since the DTD allows these elements to occur in other contexts.)

Elements styled using this method will appear as tables but they will not support standard
table editing functions such as those provided through the Table Properties dialog. This
type of functionality requires scripting via macros.

Example style rules

72

The following sample style sheet contains style rules that were created with the CSS editor:

DOCTI TLE { font-size: 20pt; |ine-height: 22pt; color: green }
.student { display: none }

#paral { font-style: italic; font-weight: bold }

TI TLE3, TITLE4 { font-size: 14pt; |ine-height: 16pt }

QUOTE P { text-indent: 0.5in }

Ll .student { display: none }

SEC{prefix-format: "[%attribute NAVE,]";}

The first rule states that all DOCTI TLE elements have a font size of 20 points, line height of 22 points, and
are displayed in green.

The second rule states that all elements in the class student (that is, all elements, of any type, whose CLASS
attribute has the value ‘student’) are hidden.

The third rule states that the element with ID value paral appears in a bold, italic font.

The fourth rule states that both Tl TLE3 and Tl TLE4 elements have a font size of 14 points and a line height
of 16 points.

The fifth rule states that a P element that is contained in a QUOTE element is indented by 0.5 inches.

The sixth rule states that an LI element in the class "student” (that is, its CLASS attribute has the value
‘student’) are hidden.

The seventh rule states that, for all SEC elements, the value of the NAME attribute is displayed before the
element content.

Customization Guide

Resource Manager

In XMetal Author, the Resource Manager lets you view and organize resources so that you can easily use
them in your documents. By default, the Resource Manager contains the Assets tab (Asset Manager) and
the Desktop tab. You can configure the Resource Manager using the Resour ceManager interface and
through configuration files and scripts.

Assets tab (unsupported)

The Asset Manager gives you access to objects such as images and text files. In addition to adding assets
to existing asset types, you can define new types and write scripts that define how files are added to them
and the behavior that occurs when an asset is dropped into a document. For more information about adding
assets, see the XMetalL User’s Guide.

J Note: The Assets tab is unsupported and may be removed in a future release.
Desktop tab

The upper pane of the Desktop tab displays a Windows Explorer-type view of the files and folders on your
system. The lower pane shows folder contents. You can drag and drop files from the lower pane into your
document.

The Desktop tab supports Windows shell namespace extensions.
When customizing the Desktop tab using scripts, you need to be aware of the following limitations:

 You cannot grab the control with a script
« | Di spat ch is not supported by any of the Microsoft interfaces used by the Desktop tab

» Replacing it with a new tab (using the AddTab method) and creating a new instance of Windows Explorer
does not create a single instance (opening a folder creates a new instance of Explorer)

Custom tabs

You can use script to add custom tabs (for example, that contain ActiveX controls) to the Resource Manager
using the ResourceManager APIs.

Configuring the Asset Manager

You can change the way assets are displayed in the Asset Manager and the behavior that occurs when they
are dropped into a document.

The tools consist of:

 Configuration files.
 Properties and methods as described in the XMetalL Programmer’s Guide. For example, you can invoke a
dialog when users drop an asset into the Asset Manager or into a document.

« Script variables. These strings correspond to files, element contents, and attribute values used by the Asset
Manager. They are resolved by the Asset Manager before scripts are executed. Most of them apply to the
I t emelement for the asset currently being dragged.

XMetalL Developer 19.0 © 2024 JustSystems Canada Inc. 73

Configuring the Asset Manager

74

In order to configure the Asset Manager, you need a working knowledge of a scripting language (JScript,
JavaScript, or VBScript), XML, and HTML. Familiarity with the HTML Document Object Model (DOM) as

implemented by Internet Explorer is also helpful.

Table 25: Configuration files

Name

Description

fxitems.xml

fxindex.htm

fxmaster.xml

noscrollbars.txt

Asset catalog file. This file contains an entry (I t emelement)
for each asset. It can also include templates that define the
structure of each entry, and scripts that define the action
that is to take place when an asset is dropped into a
document.

Asset display file. This file determines the contents of the
lower pane of the Assets tab when the user opens a folder,
including text and images. Each folder in the Asset Manager
must contain an asset display file.

Master asset catalog file, by default . . \ Pr ogr am

Fi | es\ XMvet aL\ Aut hor\ Asset s\ f xmast er . xmi .
If an asset catalog file does not contain the template and
script that determine how an asset is represented and how
itis dropped into a document, the Resource Manager looks
here for this information.

An empty text file. When this file exists in an asset folder,
scroll bars are not displayed in the lower pane of the Asset
Manager.

Table 26: Methods and properties

Name

Description

Applicati

Applicati

Sel ection

Sel ection

Sel ecti on
Sel ection

Sel ecti on

Sel ecti on

Application. Alert,Application.Confirm

on. Asset sPat h

Appl i cation. CopyAssetFil e

on. Dr opPoi nt

. Col | apse

Sel ection. Cont ai nerAttri bute

. Cont ai ner Nane

Application.FileToString

. I nsert El ement,
. Canl nsert

.Insertl mage

. MoveToEl enment

User interaction methods.
The path to the assets.

Copies a file from any location (including one specified by
a URL) into an asset folder or other folder.

Returns a Range object corresponding to the point at which
the user drops the script into the document.

Collapses the selection to an insertion point at its start- or
end-point.

Sets or returns the value of a specified attribute of the
selection’s container.

Sets or returns the name of the current container (element,
processing instruction, section, or comment).

Enables you to read an external text file (plain text or
tagged) and assign its contents to a variable. It can then be
manipulated or pasted.

I nsert El enent inserts the specified element.
Canl nsert can be used to check if the insertion would
be valid.

Inserts an image using an element defined as an image
element.

Move to the next instance of a specified element.

Customization Guide

Creating asset types

Name Description

Sel ecti on. Past eStri ng,Sel ecti on. CanPast e | Past eSt ri ng does a basic paste of a string into the
current document. CanPast e can be used to check if the
intended paste is valid.

Sel ecti on. Sel ect Cont ai ner Cont ent s Selects the contents of the current container.

Table 27: Script variables

Name Description

%Pat hname% The path part of the current page’s URL; that is, everything
up to the rightmost forward slash.

o%-i | ename% The value of the SRC attribute of the Fi | ename child
element of the | t emelement of the asset being dragged.
In other words, the asset filename.

%lext Dat a% The content of the Text Dat a child element of the | t em
element of the asset being dragged.

%hi sltem3Qget G | dA tri bute(e enent, i ndex, at tribut €)% The value of the attribute at t r i but e of the child element
el ement ofthe | t emelement corresponding to the asset
being dragged.

% hi sl tem SQ get Chi | dI nner H nh (el enent , i ndex) % The contents of the subelement el ement of the | t em
element corresponding to the asset being dragged.

Ot ltem SQ get Attri bute(id,index, attribute)% The value of the attribute at t r i but e of the element in
f xi temrs. xm that has the ID attribute equal to i d.

Creating asset types

New asset types are defined in asset templates, which consist of an asset display file and an asset catalog
file. When you define a new asset type, you enable users to create assets of this type.

To add an asset type, you create a folderin. .\ Program Fi | es\ XMet aL\ Aut hor\ Asset Tenpl at es.
When a user creates a new asset folder and specifies the new asset type for that folder, the files in the
template folder are copied to the new asset folder. The scripts in the asset catalog file define the following:

« The action to take when users drag files into the asset folder. This can include prompts and dialogs. The
script adds an | t emelement for the new asset into the catalog.

« The action to take when a user drags a file from the asset folder into a document.

As you are developing and testing asset catalog and asset display files, you can refresh the view in the Asset
Manager through the right-click menu.

Sample asset catalog and asset display files files are located in. . \ Program
Fi | es\ XMet aL\ Aut hor\ Sanpl es\ Asset Tenpl at es.

Asset display file

Every asset folder contains a display file that reads the entries contained in the catalog file and displays them
in the lower pane of the Asset Manager. Users can easily drag and drop assets from the lower pane into a
document.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 75

Asset catalog file

Sample asset display files are located at . . \ Progr am Fi | es\ XMet aL\ Aut hor\ Sanpl es\ Asset
Tenpl at es. The sample display files have the following characteristics:

« An OBJECT element that refers to an ActiveX control that reads an asset catalog file and creates a data
structure.

« A JScript that uses this control to read the asset catalog file and create a data structure.

A script that traverses the data structure and obtains information about an asset from the corresponding
| t emelement. This information can be customized, but it usually consists of an asset filename, an icon
filename, a description, and a unique identifier. This information is displayed in the lower pane.

=

~ Note: Because the asset display file is processed by a browser component, you must use a standard
scripting language such as JScript.

To give users information about the asset type, you may want to include text and graphics. If a folder does
not contain any assets, you still need to create an asset display file in it. These can include text or graphics
that explain what kind of assets are in the sub-folders of the current folder. For assets that may be difficult
for some users to understand, you can include a short documentation section or links to other documents.

Asset catalog file

The asset catalog file provides a template for the structure of the catalog entries (I t emelements) and scripts
that define the behavior that occurs when a user adds an asset to a folder or drags it into a document.

Sample asset catalog files are located in . . \ Program Fi | es\ XMet aL\ Aut hor\ Sanpl es\ Asset
Tenpl at es. In addition to the required elements, your template can contain any other elements. The templates
in the sample files also contain Descri pti on and SCRI PT.

Here is a sample template:

<Item Type="File" Cass="Fig" ID="%il enane% FILEFILTER="*.pg;*.qgif;*.png">
<l con SRC="%i | ename% />
<Descri pti on>%ASK: Descri pti on: 9% Descri pti on} <Descri pti on>
<Fi | ename SRC="9%i | ename% / >
<SCRI PT Language="JScri pt">
<SCRI PT>
<l tenp

Table 28: Required template elements

Name Description

Item The root element. The Ty pe attribute can have the value
‘“Text' or ‘File’. The Cl ass attribute identifies the asset type.
I D must be a unique identifier within the set of assets in a
particular folder. The FI LEFI LTER attribute is used if an
assets folder is created from Windows Explorer instead of
through the Asset manager. When this folder is selected in
the Asset tab, you see a Convert to Assets page. The file
extensions specified determine which types of files are
added to the assets when you do the conversion.

Icon The icon used to represent the asset in the lower pane of
the Asset tab. The SRC attribute specifies the icon file. This
file must be in a format that can be displayed by a Web
browser. If you do not want to use the actual asset filename,
you can create a dialog for the user to enter a filename.

Filename The asset filename. The SRC attribute specifies the file.

76 Customization Guide

Text file and text block assets

Description

Descri pti on can be used to generate a text box prompt in the Asset Details dialog box that appears when
the user adds an asset to the folder. A string of the form ¥%ASK: St ri ngl: %St ri ng2 is interpreted as follows:

» %ASK causes a text box to be displayed.
e Stringl is for the text box label. This should be a short string without spaces.
« St ri ng2 specifies the default content of the text box.

When the | t emelement is written to the asset catalog file, the user’s response is substituted for the %ASK
string. %ASK can also be used to prompt the user for an attribute value.

SCRIPT

The SCRI PT element contains code that inserts the asset into the document when a user drags it from the
Asset tab. If the asset has the type ‘File’, the script also copies the asset file from the asset folder to a location
relative to the document in which it is being inserted.

This script carries out the following steps:

Get the full path to the asset file.

Create the attribute value that specifies the filename.

Define a function, bui | dpat h, that calculates the location where the asset file is to be copied.

Define a function, dr opf xnow, that copies the file and performs the insertion.

Check whether the document has ever been saved. If it has, call bui | dpat h and dr opf xnow. If it has
not, prompt the user to save the document.

6. Check a second time whether the document has been saved. If it has, call bui | dpat h and dr opf xnow.

o~ wbdhpE

The sample template can be used to write the following | t emelement:

<Item Type="Fil e" dass="Fig" |ID="scully06.jpg" FILEFILTER="*.]pg;*.qgif;*.png">
<l con SRC="scul | y06.j pg"/>
<Descri ption>Scul | y saves Ml der agai n! <Descri ption>
<Fi | enane SRC="scul | y06. j pg"/>

<ltemp

Text file and text block assets
Assets can also consist of text files or blocks of text. The contents of the text file or the Text Dat a element
are inserted into the document when a user drags and drops the asset from the Asset Manager.

For these types of assets, you must either specify an icon in the | t emtemplate, or prompt the user to enter
the name of an image file when the asset is created.

The contents of text block assets are stored in the asset catalog file itself, rather than in another file. Text
block assets have the following characteristics:

* The Type attribute must have the value ‘Text'.

* Instead of a Fi | ename element, the | t emtemplate has a Text Dat a element that contains character data.
The script that drops the asset into a document must obtain the contents of the Text Dat a element.

Master asset catalog file

If the catalog file in an asset folder does not contain the template and script that determine how an asset is
represented and how it is dropped into a document, the Resource Manager looks in the master asset catalog
file for this information.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 77

Remote assets

Storing templates and scripts in a central location is a convenient way of managing your assets. If you choose
this approach, you need to create a shell asset catalog file containing the following elements in the asset
folder:

<?xm version="1.0" standal one="yes" ?>
<l tems><|tenms>

If the template and script for an asset type are contained in the master catalog file, then the user is prompted
to choose the asset type from among all the available asset types when a new asset is created. If the catalog
file in the asset folder contains the template and script, the asset type is assumed to be the one specified by
the template.

Remote assets

You can store asset folders on a Web server or Intranet, but you cannot add new assets to remote folders.
Remote asset catalog files specify URLSs to the asset catalog files in each asset folder. Here is an example:

<?xm version="1.0" standal one="yes" ?>

<FCLDERS MCDI FI ED="19990511. 1" >
<FOLDER NAME="Buttons" URL="http://wwmv. nmysite.com xmasset s/ buttons/fxi ndex. ht ni'/>
<FOLDER NAME="Bi gButt ons"

URL="http://ww. mysi te. conl xmasset s/ but t ons/ bbut t ons/ f xi ndex. ht n{'/ >
<FOLDER NAME="Littl| eButtons"

URL="htt p: //ww. mysi te. conl xmasset s/ buttons/| buttons/fxi ndex. ht m'/ >

</ Fd_ bERS>

Remote asset catalog files have the following characteristics:

* FOLDER elements indicate folders. You can create a nested folder structure.

« The MODI FI ED attribute indicates the last revision of the asset folder structure, in YYYYMMDD.R format,
where R is a revision number. You must update this value whenever the structure of the file changes. If the
MODI FI ED value changes in the top-level remote asset catalog file, the local structure is updated the next
time the user accesses remote assets.

« The NAME is the folder name, the URL is the full path to the folder’s asset display file.

When you access remote assets, a folder structure is built underneath the folder that you designate as the
remote folder on your local system. Its structure parallels that of the assets on the server, but the only content
in each local folder is an Internet shortcut file that points to the remote server. Internet shortcut files have the
extension ‘.url’. Here is an example:

[I nt er net Short cut]
URL=ht t p: / / www. nysi t e. conl xnasset s/ f xi ndex. ht m

The value of URL must be the location of the asset display file in the remote assets folder on the server.

Set up aremote assets folder
You first create assets on your local system and then move them to a remote location on a server.

1. Create a folder for local assetsin. .\ Program Fi | es\ XMet aL\ Aut hor\ Asset s.
Give the folder an easily identifiable name, such as ‘Local'.

2. Inthe Local folder, create an asset catalog file that contains entries (I t emelements) for each asset.
3. Create a folder for remote assetsin. .\ Program Fi | es\ XMet aL\ Aut hor\ Asset s.

78 Customization Guide

Set up aremote assets folder

Give the folder an easily identifiable name, such as ‘Remote’.

4. Inthe Remote folder, use a text editor to create an Internet shortcut file, and save the file as asset s. url .
5. Move the asset folders from their local location to the server location.
6. In the Remote folder, create an asset catalog file.

XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 79

Configuring XMetalL

Each installation of XMetaL Author contains a global configuration file and a user configuration file. You can
configure XMetaL Author behavior for your customization through the global configuration file.

Configuration files contain one or more variables that are read when you start XMetalL. Each variable is a
name-value pair. The values can be booleans, pathnames, numbers, and strings. Changes to configuration
files are effective when you re-start XMetal.

Table 29: XMetalL configuration files

Name Description

.\Program Files (x86)\XMetalL 12.0\Author\xmetal.ini Global configuration file. Contains default factory settings
and settings made for deployment within a customization.
This file should not be modified after XMetaL Author has
been installed, except by the installer in Modify or Repair
mode. This file is reset to its factory settings if XMetalL
Author is updated or re-installed.

.\Users\{username} User configuration file. Contains user-specified settings and

\AppData\Roaming\SoftQuad\XMetal \12.0\XMetaL.ini settings made through the XMetal interface, such as
Options. These settings take precedence over global
settings.

If your customization of XMetaL uses the XMetalL Application Customization (XAC) set, these files can be
stored on a web server, a network server, or any user-accessible folder on the local system.

Adding new toolbar icons

You can add icons to the list of those already provided for creating custom toolbar buttons.

The images must conform to the following specifications:

 Standard Windows 16 color palette
» Width 18 pixels, height 16 pixels
» BMP format

The files containing the images must be BMP files containing a row of up to 10 images in the format described
above. Each icon set can have up to eight rows. The files must be named r owl. bnp, r ow2. bnp, ...r ow8. bnp.
The files for a single icon set must be in their own sub-folder of the | cons folder.

In order to tell XMetaL Author to use a custom icon set, you must edit the | cons\i cons. i ni file. For
example, if you have two custom icon sets in the folders | cons\ Fl ags and | cons\ Tool s, you need to add
two entries to the i cons. i ni file, as follows:

[icon groups]

1=Fl ags
2=Tool s

If you change the number associated with an icon group after some of its members have been assigned to
toolbar buttons, those buttons may then have a different icon, or no icon. In this situation, you must re-assign
images to the buttons.

XMetalL Developer 19.0 © 2024 JustSystems Canada Inc. 80

Frequently used configuration variables

Frequently used configuration variables

The following is a list of frequently used configuration variables.

Table 30: Frequently used configuration variables

To do this:

Change this variable:

Disable well-formed editing

Create a log file

Disable default validation on save

Display entity replacement text in Tags On view
Turn off rules checking option

Turn off rules checking

Set macro scripting language

Set macro folder location

Allow modification of toolbars and menus
Set the default width of the Structure View
Change top-level folder in Assets tab

Set toolbar filepath

Change backup extension

Change default plain-text font

Change recognized entity extension

Make a log file during debug

Set the name of the log file

Turn off validation

Set user name

enable_edit_as_wellformed
make_log_file
validate_before_export
expand_entities_in_tags_on_view
rules_checking_always_off_option_shown
rules_checking_always_off
default_macro_language
macro_path
enable_toolbar_customization
default_structure_view_width
assets_path

tbr_path

backup_ext

default_font_name

entity_ext

make_log_file

log_file
rules_checking_always_off

user_name

Configuration variables

The following variables are recognized by XMetalL Author at startup.

Table 31: INI Variables

Variable name Default value

Description

about_rtf file

action_on_space_typed_in_
element_content

insert_directly

always_undo_clear_after_save YES

applet_ext .class

assets_path

XMetal Developer 19.0

${SQDIR}/XMetaL.rtf

${SQDIR}Assets

File contents to be displayed in the
About box.

Clears the undo stack whenever a
document is saved.

© 2024 JustSystems Canada Inc. 81

Configuration variables

82

Variable name

Default value

auto_backup_instead_of auto_save | False

backup_ext
CALS_table_auto_layout
color_entity_refs_in_text
colormap_segment_size
context_area_width

ctm_path

cursor_file0
cursor_filel
cursor_file2
cursor_file3
cursor_filed4
cursor_fileb
cursor_fileé
cursor_file7
cursor_file8
cursor_file9
custom_macro_ext

custom_macro_path

default_font_name
default_font_size

default_macro_language

default_save_as_ext

default_structure_view_width

default_template

display_place_marker_for_float

document_path

draw_grid_on_borderless_tables

.bak

NO

NO

16

120
${SQDIR}\Rules

${SQDIR}/Cursors/Cursor0.cur
${SQDIR}/Cursors/Cursorl.cur
${SQDIR}/Cursors/Cursor2.cur
${SQDIR}/Cursors/Cursor3.cur
${SQDIR}/Cursors/Cursor4.cur
${SQDIR}/Cursors/Cursor5.cur
${SQDIR}/Cursors/Cursoré.cur
${SQDIR}/Cursors/Cursor7.cur
${SQDIR}/Cursors/Cursor8.cur
${SQDIR}/Cursors/Cursor9.cur
.mcr

${SQDIR}\Startup

Courier New
12
VBScript

xmi

YES
C:\Users\{username}\Documents

true

Description

Instead of automatically saving the
document to the same file,
automatically create a backup file (with
the extension specified in the
backup_ext INI variable). When this
value is True, XMetal creates a backup
file without performing validation.

Initial size of context area.
Path of . ct m(customization) files.

Defaults to rules_path, which
defaults to "${SQDIRN\Rules" where
${SQDIR} is the software's install
folder path.

Extension for macro files

Macros to be loaded when XMetalL
starts.

Font used in Plain Text view.
Size of the font used in Plain Text view.

Determine default language when a
new macro is created.

Default Save As extension.
Default width of Structure View.

Default template to use when user
creates a new document.

Draw a dotted line around table cells
when the border value is set to 0.

Customization Guide

Configuration variables

XMetal Developer 19.0

Variable name

empty_element_image

enable_advanced_debugging

enable_edit_as_wellformed

enable_toolbar_customization

entity_ext

entity_font_name

entity_font_size

entity_icon_background_color

entity_icon_color

entity_path
evaluation_version

expand_entities in_tags_on_view_too

export_doc_type_dec

export_eol

export_sgml_dec
extid_map

find_backward

find_case_sensitive

find_patterns

find_whole_words

find_wrap

fix_image_urls_on_export

Default value

empty.gif

NO
YES

YES

.ent

Arial

white

slate grey

${SQDIRN\Rules\entities
NO
NO

YES

NO

NO
${SQDIR}/extid.map
NO

NO

NO

NO

YES

YES

© 2024 JustSystems Canada Inc.

Description

Image displayed for an empty element
in Tags On and Normal views.

Allow a user to edit a document as well
formed.

When set to NO, disables the
Customize option in the toolbars
context menu (right-click menu).

Entity file extension.

Font used for entity icons in Tags On
view.

Size of the font used for entity icons in
Tags On view.

Background colour used for entity icons
in Tags On view.

Colour used for entity icons in Tags On
view.

Path of entity files.

Entity replacement text in Tags On
view.

When set to NO the doctype
declaration is omitted from the saved
file. Files that contain a doctype
declaration when opened have the
doctype declaration stripped from them.

The control character hex OA (line
feed) is appended to the end of lines
so that each line contains OA OD at
the end. Without this variable set to NO
the end of a line is marked only with
0D (carriage return).

Path to the ext i d. map file.

Set the Backwards Search checkbox
in the Find and Replace dialog.

Set the Match Case checkbox in the
Find and Replace dialog.

Set the Use Pattern Matching checkbox
in the Find and Replace dialog.

Set the Whole Words checkbox in the
Find and Replace dialog.

Set the Wrap checkbox in the Find and
Replace dialog.

83

Configuration variables

84

Variable name

fix_sysid_url_on_export

fix_transparent_color
fix_URLs_on_remotesave
format_tags
fx_chooser_root_page
fx_chooser_viewer
help_context_file
help_file
help_home_page
help_on_help_file
highlight_mode
html_browser
html_browser_path

html_browser0

html_browserl

html_browser2

htm|_browser3

html_browser4
html_browser5
html_browser6
html_browser7
html_browser8
html_browser9
html_file_extensions

icons_in_menus

image_ext

image_exts

image_path

image_viewer

Default value

YES

YES

YES

NO
${SQDIR}Yhmfx/hmfx.htm
${SQDIR}\xmetal.chm
${SQDIR}Nxmetal.chm
http://www.xmetal.com
${SQDIR}viewhlp.chm
Default

htm;shtm;html;shtml;mv

YES

.gif
gif;jpg;png;bmp;tif

C:\Users\{username}\Documents

Description

true (default): XMetaL Author changes
the SYSTEM URL (path to the DTD) in
the Doctype Declaration to a path
relative to the location of the XML file.
false: The path is left unaltered (i.e.,
the value it was when the XML file was
first loaded)

External browser (1st on Preview
toolbar

External browser (2nd on Preview
toolbar

External browser (3rd on Preview
toolbar

External browser (4th on Preview
toolbar

External browser
External browser
External browser
External browser
External browser
External browser

Display icons in the menus on the
Menu bar.

Image file types listed in the Insert
Image dialog box.

Defaults to document_path but at app-
exit time, is set to last place an image
was chosen from.

Customization Guide

Configuration variables

XMetal Developer 19.0

Variable name
image_viewer_path

img_ext

import_ext
import_ext

import_path

include_required_elements
internet_session_agent
internet_session_cache
internet_session_dialog_delay
internet_session_http_request_header
internet_session_proxy
internet_session_proxy_access
internet_session_proxy_bypass
ISMAP_ext

keep_sv_mv_in_sync_by_default

log_file

macro_ext
macro_file
macro_path

make_backup_file

make_catalog_dump_file

make_log_file

max_changes_between_saves

max_time_between_saves

minimize_tag_icons

net_img_ext

OASIS_override

Default value

BMP;GIF,EPS;PCX;TIF,WMF;WPG;
SDW;CGM;TGA;JPG;PNG;PIC

.htm
.sgm

1000
Accept: */*

0

.map

NO

${SQDIR}Nxm_lookup.log

.mcr

${SQDIR}\Macros
NO

NO
NO

65000

1000

false

GIF;JPG;PNG
YES

© 2024 JustSystems Canada Inc.

Description

Defaults to document_path but at app-
exit time, it is set to the last place from
where an image was chosen.

Make element collapsing and

expanding which you do in either the
Structure View or the Main View, get
automatically done in the other view.

Path and filename of the log file
XMetaL will create if the ‘make_log_file’
variable is set to YES.

Path to macros folder.

Create a second copy of every file
saved using the extension set in the
‘backup_ext’ variable.

If setto YES, XMetal creates a log file
of all files it opens and searches when
opening or creating a new document.

When this number of changes to a
document is made, XMetalL
automatically saves the file.

When this number of minutes passes,
XMetal automatically saves the file.

Can show tags without element names
inside them.

See topic Giving priority to system or
public identifiers.

85

Configuration variables

Variable name
ole_server_busy_timeout
open_as_wellformed
organization
print_left_footer
print_left_header
print_middle_footer
print_middle_header
print_right_footer
print_right_header
product_identifier
prompt_for_attrs
publish_change_from
publish_change_to
remote_edit_temp_dir
restore_last_open_docs

rules_checking_always_off

rules_checking_always_off_
option_shown

rules_ext
rules_file

rules_path

save_path

show_comments
show_fixed_attrs_in_tag_tips
show_head_element
show_ignored_marked_sections
show_inline_images
show_rules_check_off_dialog

show_structure_view_by_default

show_tag_tips

show_urls

86

Default value
8000
NO

1234-5678-9246
NO

full path
YES
NO

rls
XMetalL.rlx
${SQDIR}\Rules

C:\Users\{username}\Documents

YES
YES
YES
YES
NO

NO

YES

YES
NO

Description

XMetal - Central. Do not change.

Uses 8.3 paths.

When set to YES, XMetaL never
validates a document.

When set to true, turns rules checking
option off.

The directory XMetaL should look in to
find rulesfiles (. rl d,. rI x,.rls),
. dt d files and schema files (. xsd).

The directory that is shown when
saving a document for the first time.

Defaults to document_path but at
app-exit time, it is set to the last
place where a document was
saved.

Show comments in Tags On view.

Hide the HEAD element in HTML.

Show the Structure View when a
document is opened.

Customization Guide

Configuration variables

Variable name
source_color_anchor_tag
source_color_background
source_color_cdata
source_color_comment
source_color_decl
source_color_end_tag
source_color_entity_ref
source_color_foreground
source_color_quote
source_color_script
source_color_script_comment
source_color_script_keyword
source_color_script_quote
source_color_start_tag
source_color_sub_decl
source_color_table_tag
source_view_auto_indent

source_view_color_html

source_view_color_script

source_view_keywords_path
source_view_line_numbering

source_view_tab_size

source_view_use_tabs

source_view_wrap

SQCONFIG

SQDIR

styles_ext
styles_path

tag_font_name

tag_font_size

XMetal Developer 19.0

Default value
008000
FFFFFF
000080
800080
FF0080
000080
808080
000000
FF0000
808080
008000
0000FF
408080
0000FF
000080
8000FF
YES
YES

YES

source_view_dont_wrap_in_tags | NO

source_view_expand_tabs_on_save | NO

${SQDIR}\Keywords.ini
YES
3

YES

C:\WINDOWS\xmetal.ini;C:\Program Files

(x86)\XMetaL 12.0\Author\xmetal.ini

C:\Program Files (x86)\XMetaL 12.0\Author

OR C:\Program Files (x86)\XMetalL
12.0\XMAX

.CSS
${SQDIRNDisplay
Avrial

8

© 2024 JustSystems Canada Inc.

Description

Not used.

Default text color in Plain Text view.

Color of attribute values.

Enable syntax coloring on markup
(Plain Text view).

Enable syntax coloring on scripts (Plain
Text view).

Display line numbering in source view.

Width of a tab character (Plain Text
view).

Display tabs in source view.

Wrap lines in source view. 0 = Off; 1 =
Break within words; 2 = Break between
words.

Path to the XMetaL INI files.

Path to the XMetalL executable

xmet al . exe. This value is used by
other INI variables in the form
${SQDIR}.

Typeface used for tag icons.

Font size used for tag icons.

87

Configuration variables

88

Variable name
tag_icon_background_color
tag_icon_color
tags_on_graphical_tables
tbr_path

templates_path

toolbar_icon_path

unavailable_image

undo_limit

unique_attribute_value_max_tries

unlock_version
unsupported_image

url_file_ext

urls_default_to_relative
use_extid_mapping
use_inline_IME
use_open_market

user_initials

user_name

validate_before_export

view_for_open

warn_before_saving
wysiwg_printer_font_name
wysiwg_printer_font_size
wysiwyg_nodes_to_hide

xml_export_blank_line_after
_end_tags_0001

xml_export_blank_line_after
_start_tags_0001

Default value
white

slate grey

NO
${SQDIR}Rules
${SQDIR\Template
${SQDIR}NIcons

GIF/noimg.gif
1000
1000

NO
GIF/badform.gif

Web Documents

(*.htm™* *.mv,*.shtm)|[*.htm*;*.mv;*.shtm|HTML
Documents (*.htm,*.html)|*.htm;*.html|Miva
Documents (*.mv)|*.mv|Server Includes
(*.shtm,*.shtml)|*.shtm;*.shtml|All Files

el
YES
YES
NO

NO

first initial of username

same value as the user's Windows logon
name

YES

NO
Arial
10

Description
Background color for tag icons.

Text and outline color for tag icons.

Defaults to rules_path
Default location of templates.

Default location of icons when toolbars
are created.

Maximum number of undo actions.

Number of times XMetaL will try to
create a unique attribute value. This
affects some APl methods.

User's first initial extracted from the
Windows logon name.

Name used for change tracking. If no
name is specified, the default Windows
user name is used.

Validate a file before any action that
causes the file to be saved.

Startup View. Possible values are: 0
(Plain Text), 1 (Tags On), 2 (Normal).
Note that these values are different
from those used in the ‘ViewType’ API
property.

Customization Guide

Configuration variables

Variable name

xml_export_blank_line_before
_end_tags_0001

xml_export_blank_line_before
_start_tags_0001

xml_export_indent_spaces
xml_export_indent_tags_0001

xml_export_new_line_after
_end_tags_0001

xml_export_new_line_after
_start_tags_0001

xml_export_new_line_before
_end_tags_0001

xml_export_new_line_before
_start_tags_0001

xml_export_paragraph_child
_elms_0001

xml_file_extensions

Default value

xml;ux;ent

Description

XMetal Developer 19.0

© 2024 JustSystems Canada Inc.

89

Glossary

ambiguous content

model

application
customization

attribute

block element

browser

CALS table model

cascading style
sheet (CSS)

catalog files

CDATA

CDATA section

COM interface

content model

counter
customization
customization file

(CTM)

current element

XMetalL Developer 19.0

A content model in a DTD is ambiguous if an element in a document instance could
match more than one part of the content model.

A customization at the application level. Application-level customizations apply to
all documents, regardless of the DTD or schema used.

A value that is associated with an element but is not part of the content of the element.
Many properties are represented by attributes, for example, class or ID.

An element whose content is preceded and followed by line breaks.

A program that communicates with Web servers and is used for retrieving and
displaying documents from the World Wide Web or an intranet. Most browsers use
a graphical interface to provide access to text, images, audio, and video.

A widely used DTD for table markup, described in the U.S. Department of Defense
SGML standard MIL-M-28001B. XMetaL Author supports a definition of the CALS
DTD developed by the OASIS consortium and described at www.oasis-open.org.

A way to specify document formatting that is supported by browsers. XMetalL uses
cascading style sheets to format the document pane in Normal and Tags On views.
A cascading style sheet generally consists of one or more rules that define element
appearance. These style sheets are said to be cascading because several style

sheets can be applied to the same document. See www.w3.0rg for more information.

One or more files that map external identifiers for DTDs, rules files, or entities to a
filename. Also called OASIS catalog files. For more information on catalog files, see
OASIS Technical Resolution 9401:1997.

Character data. A type of content in which any XML or SGML markup delimiters
(such as ‘<’and ‘&’) that appear are treated as ordinary characters. XML and SGML
documents can contain CDATA sections; SGML documents can contain CDATA
elements.

A markup construct in XML and SGML documents, beginning with the characters
‘<! [CDATA[’and ending with]] >', inside which all content is treated as character
data.

Component Object Model. A language-independent interface developed by Microsoft
for combining applications under Microsoft Windows. The XMetalL scripting APl uses
a COM interface.

An expression in a DTD that defines the content of a particular element.

A numerical element prefix that is incremented automatically for each successive
occurrence of that element. For example, chapters in a document may be numbered
1, 2, 3, ..., etc. Counters are implemented via a cascading style sheet.

An enhancement to the functionality, behavior, or appearance of XMetalL Author.
Customizations can be made at the document level or at the application level.

An XML configuration file specifying a variety of element-based behaviors and
properties for an XML document type.

The element containing the insertion point or selection. If an entire element is
selected, the current element is the parent of that element, not the selected element
itself.

© 2024 JustSystems Canada Inc. 90

http://www.oasis-open.org/cover/tr9502.html
http://www.w3.org/
http://www.oasis-open.org/html/a401.htm

Glossary

DOCTYPE
declaration

document

customization

Document Object
Model (DOM)

DTD

element

empty element
entity

entity reference

external entity

external identifier

external identifier
map file

followed-by element

form

general entity

generated text

graphic entity

hypertext

XMetal Developer 19.0

Document type declaration. A declaration at the top of an XML or SGML document
that specifies which DTD applies to the document, and may contain some extra
markup declarations.

A customization that applies to all documents based on the DTD or schema used
for the customization.

The Document Object Model (DOM) is an abstract definition of an API (application
program interface) for manipulating XML document structures. The DOM is a
Recommendation of the World Wide Web Consortium (W3C), developed and
maintained by the W3C DOM Working group. XMetal follows the DOM Level 1
Specification. The DOM was designed to represent XML structures, but can represent
SGML structures (such as CALS tables) if they are also found in XML.

Document Type Declaration. A set of declarations, written in a formal notation, that
defines the structure of a document.

The building blocks of XML and SGML documents. Elements are named according
to their function in the document, for example, headings, lists, and paragraphs.

An element that cannot have any content.
A special character, a block of text or markup, or a file.

A reference, using a specific syntax, to an entity. When the document is displayed
in a browser or editor, the entity reference is replaced by the text or file that the entity
represents.

A type of entity that represents another XML or SGML file.

A way of identifying an external file. External identifiers can appear in a document
type declaration and in external entity declarations, where they identify the external
file that the entity refers to. In SGML files, external identifiers can consist of a system
identifier, a public identifier, or both. In XML files, external identifiers must contain
a system identifier, which may be preceded by a public identifier.

The file, . . / XMet aL/ Aut hor / ext i d. map, that associates external identifiers with
filenames on the system.

An element that is inserted following the occurrence of a specific element.
Followed-by elements are configured in XMetal Developer as part of the
customization (. ct n) file.

A data-entry interface usually associated with specific elements in an XMetalL
document. Forms are designed in the XMetalL Forms Toolkit (XFT) either as dialog
boxes that are launched from an XMetal macro, or as content that appears as part
of an element.

These can be text entities, which represent a piece of text or a single character;
external entities, which represent another XML file; and graphic entities, which
represent a graphic, audio, or video, etc. file.

Text that is not part of the document content, but is generated by a display program
and displayed at the beginning or end of an element’s content.

A type of general entity that represents an external multimedia file, for example, a
graphic, video, or audio file.

Text that can be used to link to another document or another location in the same
document. The viewer can display the linked document or location by clicking the
text.

A unique identifier. The value of an ID attribute must not be used for any other ID
attribute in the document.

© 2024 JustSystems Canada Inc. 91

http://www.w3c.org/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/

Glossary

92

IDispatch object

IDREF

inline element

in-place control

internal subset

ISO

ISO 8859-1 character

set

macro

marked section

marked section
parameter

markup

MCR file

modal dialog box

modeless dialog box

namespace

notation

OASIS

An object associated with an in-place control that gives a script access to the control’s
properties, methods, and events.

A reference to an ID. Unlike ID attributes, IDREF attributes do not have to be unique:
more than one IDREF can refer to the same ID.

An element that does not have a line break before or after its contents.

An ActiveX control that is embedded in the Normal and Tags On document panes
in XMetaL Author or XMetaL XMAX, and communicates with XMetaL Author or
XMetaL XMAX so that changes in the control can modify the document, and vice
versa.

An optional part of the document type declaration that may contain markup
declarations.

International Organization for Standardization.

The character set for special or accented characters that is widely used in HTML
documents. This character set is also called 1SO Latin 1. It includes characters
required for most western European languages.

A sequence of XMetaL actions or script commands that can be run as a unit via a
keyboard shortcut, a toolbar button, or a menu item. Macros can be recorded from
within XMetal Author, or created by inserting scripting code into a macro file using
XMetal Developer.

A markup construct in SGML documents that designates the content for special
processing. The parameters of the marked section specify the type of processing.
The most common uses for marked sections are to cause a portion of the document
to be ignored at certain times, and to surround SGML markup constructs that you
want to be treated as text, not markup.

Keywords that determine how to process a marked section in an SGML document.
The available keywords are INCLUDE (process the section normally); IGNORE (do
not process the section); CDATA (treat elements and entity references in the content
as text, not markup); RCDATA (treat elements in the content as text, not markup);
and TEMP (the section is temporary).

Special instructions or indicators in a document that specify how the enclosed content
is to be processed by an application. Element tags are an example of markup. In
an XML or SGML document, the element tags specify the role of the content (heading,
title, paragraph, etc.).

A macro file. An MCR file is an XML-based customization file containing XMetalL
macros, or scripts. For document-level customizations, the MCR filename is named
according to the DTD or schema; for application-level customizations, the MCR
filename is xnet al . ncr.

A dialog box that remains active until it is closed. Once it is open, you must complete
your task and close it before you can return to the main window and continue working.

A dialog box that can remain open while you are working in the main program window.

A feature of XML that permits documents to contain identically-named elements
defined in more than one DTD or schema.

A declaration in a DTD that specifies a file format that can be used for files
represented by graphic entities. For example, if GIF files are to be used, a notation
declaring the GIF format must be present in the DTD.

Organization for the Advancement of Structured Information Standards, a consortium
dedicated to promoting structured information standards such as XML and SGML.
For more information, see www.oasis-open.org.

Customization Guide

http://www.oasis-open.org

Glossary

parameter entity
PCDATA
pretty-printing
PRE-like elements
processing
instruction

public identifier
RCDATA

required attribute
required element

remote file

rules checking

rules file

schema

SDATA entity

selector

semantic tables

SGML

SGML declaration

SQDIR

XMetal Developer 19.0

An entity that represents one or more marked section parameter keywords.

Parsed character data. The most common form of text content in XML and SGML
documents. In PCDATA text, any markup, such as element start and end tags and
entity references, is interpreted with its normal meanings.

Saving a file that contains markup so that it is easily readable, for example, by
indenting lists to reflect a nested structure.

Elements that are formatted to look like the HTML PRE element; that is, with all
whitespace preserved exactly as it was entered.

An instruction that is not interpreted as part of the document’s content, but rather
interpreted by an application that is processing the file.

A system-independent string that is used to represent a DTD or entity file. Part of
an external identifier.

Replaceable character data. SGML files can have RCDATA elements and marked
sections, in which any element start- or end-tags that occur are interpreted as text,
but any entity references are interpreted in the normal way.

An attribute that must be present in order for the document to be valid.
An element that must be present in order for the document to be valid.
A file on an http or Web server.

An XMetal feature that ensures that you do not break the required structure as you
edit your document; it does this by allowing you to insert only valid elements. Rules
checking is less stringent than validation in that it checks that no errors have been
made, but does not check that the markup is complete.

An XMetaL -specific alternative to a DTD. All of the files comprising a DTD are
compiled into a single binary rules file. Rules files can be issued to XMetal users
who are not authorized to modify the DTD.

An XML standard for defining the structure, content, and semantics of an XML
document.

A type of text entity whose content is specific to a particular processing application
or platform. These entities are often used to represent platform-specific characters,
and codes for formatting systems (such as troff or TEX). SDATA entities are permitted
only in SGML files.

In a cascading style sheet, a selector is an expression, representing one or more
elements, that a style property can be associated with. A selector can represent an
element, several elements, an element with a specific ancestor, an element in a
particular class, etc.

A group of elements that is not marked up with one of the supported table models
(CALS and HTML) that can be formatted as a table.

Standard General Markup Language. A standard for describing the structure of a
document using markup. SGML is described by the ISO 8879 standard 1986). HTML
and XML are applications of SGML.

An SGML declaration is a file associated with a DTD that contains information about
the character set, markup delimiters, quantity settings, and special markup features
that are available in documents that use that DTD.

The variable that is used to represent the folder in which XMetal is installed.

© 2024 JustSystems Canada Inc. 93

Glossary

94

standalone
document

system identifier

tags

TBR

text entity

Unicode

URL

valid document

VBScript

w3C

WebDAV

well-formed
document

whitespace
XAC

XFT

XML

An XML document that an application can parse without referring to an external
DTD. A standalone document may still require a DTD in some situations, for example,
if it is being edited.

Part of an external identifier. A system identifier is generally the filename of the file
(for example, a DTD or entity set) that the external identifier refers to. In XML
documents, system identifiers are required in external identifiers, and are interpreted
as URLs.

An element in an XML or SGML file begins with a start-tag (for example, <PRE>)
and ends with an end tag (for example, </ PRE>).

Toolbar file. Toolbar and menu customizations are saved in TBR files. When XMetalL
Author loads a TBR file, it looks for the file in the user’s personal settings folder first.
If it does not find the file, it then looks for the file in the folder specified by the

t br _pat h variable in the XMetalL configuration file. By default, this variable is set
to the r ul es_pat h value. If it does not find the TBR file in either of these places,
it looks for it in the folder that contains the DTD or schema, if this is a folder other
than the Rul es folder.

A type of general entity that stands for one or more text characters.

A standard for electronically encoding the characters of many of the scripts used to
write the world’s languages, as well as special symbols such as mathematical
symbols. Unicode is the character encoding specified by XML. For more information,
see www.unicode.org.

Uniform Resource Locator. A URL is the address of a file, written in a format that
can be interpreted by a Web server.

An XML or SGML document is valid if it is well-formed and if it conforms to the rules
in the DTD or XML schema.

Visual Basic Script. A scripting language implemented by Microsoft Visual Basic.
VBScript is one of the languages that can be used to configure XMetaL with the
COM interface .

World Wide Web Consortium, an industry association for the development of World
Wide Web technologies. For more information, see www.w3.0rg.

World Wide Web Distributed Authoring and Versioning, the Internet Engineering
Task Force standard for collaborative authoring on the Web. WebDAV is a set of
extensions to the Hypertext Transfer Protocol (HTTP) and Secure Hypertext Transfer
Protocol (HTTPS) that facilitates collaborative editing and file management between
users located remotely from each other on the Internet.

An XML document that is structurally correct according to the XML standard. There
are several aspects to well-formedness, the most important of which are: the
document must have only one top-level element, and all elements must be properly
nested.

One or more space, tab, carriage return, or line feed characters, in any combination.

XMetalL Application Customization file. A compiled, deployable customization file.
It contains all the files created or copied during the build process, and is recognized
by XMetalL Author and XMetaL XMAX as a customization.

XMetal Forms Toolkit. A set of form creation and form layout tools that developers
can use to design and implement embedded forms and modal dialog boxes.

Extensible Markup Language. An easy-to-implement subset of SGML, originally
designed for displaying content over the Internet. XML is an initiative of the W3C.
For more information, see www.w3.0rg/XML.

Customization Guide

http://www.unicode.org/
http://www.w3.org/
http://www.w3.org/XML/

Glossary

XML declaration

XSLT

XMetal Developer 19.0

A processing instruction that appears at the start of an XML document. This
processing instruction indicates the XML version being used, and may specify the
character encoding and whether the document needs an external DTD.

Extensible Stylesheet Language: Transformations. A language for describing how
to transform an XML document into another XML document.

© 2024 JustSystems Canada Inc. 95

Index

ris/.rix/.rld files 38
@import statement 64
#GLOBAL element properties 16

A

adding
buttons 8
customization items 10
existing macros 33
existing, functions 33
items 10
menu items 8
new functions 31
new macros 31
ambiguous content model 38
arguments
command 18
asset catalog file 73
Asset catalog file 76
asset display file 73
Asset display file 75
Asset Manager 73
Asset catalog file 76
Asset display file 75
configuration files 73
creating new asset types 75
fxindex.htm file 75
fxitems.xml file 76
fxmaster.xml file 77
master catalog file 77
methods 73
remote assets 78
script variables 73
text and text file assets 77
associating
XFT forms, with elements 12
attribute declarations (schema support) 37
attribute description file 37, 49
attribute group definition (schema support) 37
attributes
case 47
description file 37, 49
modifying 38
selectors 61
AttributeUses (schema support) 37
autonumbering 69

B

backup_ext
xmetal50.ini 81

building
configuring the build environment 18
customization 18

bulleted lists 15

XMetalL Developer 19.0

buttons
adding 8

C

cascading style sheet editor 60
cascading style sheets 60
:after pseudo-element 69
:before pseudo-element 69
browser support 60
counters 69
examples 72
extensions 65
imported style sheets 60
introduction 60
left indent property 65
location 60
miscellaneous properties 65
prefix options 65
priority 61
rule ordering 61
standards 60
Structure View options 65
style properties 64
supported properties 66
table formatting 71
case, names 47
catalog
OASIS 41, 42
catalog file entries
resolving 42
CATALOG keyword 44
catalog, OASIS 45
CATALOG keyword 44
DELEGATE keyword 44
finding 44
keyword precedence 41
keyword summary 41
locations 44
OVERRIDE keyword 44
catalogs
support in schemas 43
change list 12
CLASS attribute 72
command arguments 18
commands
menu 8
compiling a DTD 38
complex type definitions (schema support) 37
configuration file 80
configuring
structure view CSS 60
configuring the build environment 18
content types 38
converting
doc to xml 35

© 2024 JustSystems Canada Inc.

96

Index

counters
counter-increment 69
counter-reset 69
initializing 69
multi-level 69
styles 69
creating
DTD, overview 6
forms 51, 53
rules 8
schema, overview 8
solution 7
XML template 8
XSD, overview 8
Css
custom selectors 64
debugging 19
structure view 60
supported properties 66
table formatting 71
validation 60
CT™M
debugging 19
Custom tabs (in Resource Manager) 73
customization
adding an item to 10
building 18
debugging 19
modifying 10
new 7
opening items in 10
removing an item from 10
saving 10
customization components 8
customization file element properties 11
customization support 22
Customizations
advanced 51
customizing
overview 6
with xft 51
customizing XMetalL
adding new toolbar icons 80
alias property 11
change list 12
customizing XMetaL
designating elements as paragraphs 15
designating toggling elements 15
description property 11
element properties 11
elements
assigning to buttons 15
toggling 15
followed-by element 13
images
defining in Customizations dialog box 15
image elements 15
introduction 6

customizing XMetalL (continued)
text layout 15
toggling elements 15
toolbars
customizing 15

D

data source

form 56

object 56
data source object

XFT 56
database import

required components 34
debugging

CSS and CTM 19
declaration subset 40
default content 11
default font (plain text)

xmetal50.ini 81
definition lists 15
DELEGATE keyword 44
dialog boxes

C++ 22

editor 51
disable text layout

in global element properties 16
display properties

supported CSS selectors and elements 66
DLLs 22
DOCTYPE

internal subset 40
document type declaration 39
document type definition

viewing 37
document type name 39
DTD

creating 37

creating, overview 8

language support 47

modifying 37
viewer 37
dtd hierarchy
mapping 54
DTDs 37
compiling 38
creating 37
internal 40
E
editing

functions 32
macros 31, 32
editing properties
functions 31
macros 31

macros _
creating 15 element declarations (schema support) 37
paragraphs element properties 11
defining in Customizations dialog box 15 elements
case 47
XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 97

Index

elements (continued)
modifying 38
selectors 61
encodings 10
Enter key 13
entities
case 47
events 50
examples
XFT forms 59
Excel spreadsheets
importing 34
external identifier map 45, 46
extid.map file 45, 46

E
filename
for XAC 18
output 18
XAC file 18
files
DTDs 37
rules files 37

SGML declaration 47
filetypes (UseAs) 9
followed-by elements 13
form editor 51
Form Layout Editor 51
forms 8
content mapping model 50
creating 51, 53
design tips 51
filename extension 50
forms
interfaces 50
introduction 50
samples 59
script events 50
testing 50
forms editor
dialog box editor 51
functions
adding existing 33
editing 32
editing properties 31
importing 33
new, adding 31
testing 34
fxindex.htm (asset display file) 73
fxitems.xml (asset catalog file) 73
fxmaster.xml (master asset catalog file) 73

G

generated text
counters 69
getting started 6
Global element
properties 16
Global element properties 16
global settings 80

98

H

html 35
preview 35
print 35

html printing
customize 35

icons, toolbar 80
icons.ini 80
identifier
external 39
public 39
system 39
importing
databases 34
Excel spreadsheets 34
functions 33
macros 33
scripts 33
In-Parent entries 17
customization 17
ini variables
complete list 81
internal DTD 40
internal subset 40
introduction 6

L

language support 47
limitations
schema 37
wildcards 37
list
ini variables, all 81
list elements 15
lists
defining in Customizations dialog box 15
log file
xmetal50.ini 81

M

macros
editing 31, 32
editing properties 31
existing, adding 33
importing 33
language 81
new, adding 31
testing 34
mapping
dtd hierarchy 54
master asset catalog file 73
MDAC 34
menu items
adding 8

Customization Guide

Index

menus
working with 8
meta-inf.xml 18
mkrls 38
model group definitions (schema support) 37
model groups (schema support) 37
modifying
attributes 38
customization 10
elements 38
MS Word 35
multi-language
support 47

N

NAMECASE (SGML declaration) 47
names 47
namespace extensions 73
namespace-aware selectors 64
namespaces 16
new

customization 7
next element 13
noscrollbars.txt 73
notation declarations (schema support) 37
numbered lists 15

O

OASIS catalog 41
object

data source 56
Object Bar 51
object events

processing instructions

styling using CSS 63
project

properties 18
project properties 18
project wizard 7
projects

types of 7
properties

of a project 18
pseudo-classes 61
pseudo-elements 61
public identifier 39
PUBLIC keyword 39

Q

quantities, SGML 47

R

removing
customization items 10
items 10

replacement text 14

Resource Manager 73
namespace extensions 73

rules checking 81

rules files 37
creating 38

Rules files 38

Rules folder 38

Rules Maker 38

XFT 50 S
options samples
Plain Text 15 XFET forms 59
output saving
filename, changing 18 customization 10
OVERRIDE keyword 44 encodings 10
overview Plain Text layout options 15
customizing 6 schema
creating 37
P creating, overview 8
language support 47
paragraph order limitations 37
in global element properties 16 modifying 37
Particles (schema support) 37 viewer 37
pdf 35 schemas
preview 35 catalog support 43
print 35 limitations 37
personal settings 80 rixml support 37
planning support for 37
workflow 7 script
post-build editor 31
properties 18 scripts
pretty printing 15 importing 33
printing selectors
html 35 attributes 61
elements 61
XMetal Developer 19.0 © 2024 JustSystems Canada Inc. 99

Index

selectors (continued)
namespace-aware 64
pseudo-classes 61
pseudo-elements 61
XMetal -specific 63
semantic tables 71
settings
global 80
personal 80
SGML declaration 37

simple type definitions (schema support) 37

solution

creating 7
solution explorer

working with 10
structure view

CSS, configuring 60
style properties 64
style sheets 60
styles

supported properties 66
support

languages 47
support for schemas 37
system identifier 39
SYSTEM keyword 39

T

tables

formatting elements as 71
TBR

purpose 8
template

creating 8
testing

functions 34

macros 34
text layout 15
toolbars

enable_toolbar_customization 81

working with 8
transformations 35

html 35

pdf 35

U

UseAs types 9
user name
xmetal50.ini 81

Vv

validation
CSS 60
validation disabled
xmetal50.ini 81
viewing
DTDs or schemas 37

100

viewing and saving
html 35
virtual element 17
customization 17
Visual C++ 22
Visual Studio .NET Solution Explorer 10

w

W3C schema
viewing 37
well-formed editing
disabling 81
wildcards
schema 37
Windows Scripting Engine 34
Windows shell namespace extensions 73
wizard
Import Script Wizard 33
project 7
workflow
planning 7

X

XAC
purpose 18
XAC file
filename, specifying 18
XFT 51
design tips 51
Form Layout Editor 51
forms toolkit 51
Object Bar 51
object events 50
XFT forms
Advanced Display Type property 12
associating with elements 12
Display As property 12
examples 59
in-place controls
printing 12
printing
in-place controls 12
samples 59
Use Bitmap Printing 12
xm-replace_text processing instruction 14
XMAX 20
customization 20
XMAX customization
debugging 20
XMetal Forms Toolkit 51
XMetalL Rules Maker 38
XMetal-specific selectors 63
xmetal.ini
complete list of ini variables 81
configuration 81
configuration variables 81
variables 81
xmetal50.ini 80
assets_path 81
backup_ext 81

Customization Guide

Index

xmetal50.ini (continued)
default font (plain text) 81
default_structure_view_width 81
enable_open_as_wellformed 81
enable_toolbar_customization 81
entity extension 81
expand_entities_in_tags_on_view_too 81
extid_map 45
log file 81
log_file 81
make_log_file 81
OASIS_override 44
rules_checking_always_off 81
tbr_path 81
use_extid_mapping 45
user name 81

XMetal Developer 19.0

xmetal50.ini (continued)
validate_before_export 81
validation disabled 81
XML
xml:lang 47
XML template
creating 8
XMmkrules 38
XSD
creating 37
creating, overview 8
modifying 37
viewer 37
XSL 60
XSLT 60

© 2024 JustSystems Canada Inc. 101

	Contents
	Introduction
	Creating customizations
	Before you begin
	Components
	File properties

	Visual Studio .NET Solution Explorer
	Element properties
	General
	Change list
	Display As
	Associate an element with an in-place control

	Followed by
	On Insert
	Text layout
	Treat As
	Global properties
	Virtual element
	In-Parent element

	Building a customization
	Configuring the build environment
	Debugging a customization
	Debugging and testing an XMAX customization

	Customizing using C++
	Explicit application-level customization support (without using XAC)
	External event handling in XMetaL

	Scripts
	Script editor
	Creating scripts
	Create a script

	Importing scripts
	Import a script
	Import scripts from an MCR file

	Testing scripts
	Importing data
	Converting Microsoft Word documents
	PDF and HTML previewing and printing

	DTDs and schemas
	Creating a DTD
	Modifying your DTD
	Rules files
	Document type declarations
	Internal subset

	Mapping identifiers
	Catalog files
	Resolving catalog file entries
	Catalog support for schemas
	Finding catalog files
	Giving priority to system or public identifiers
	External identifier map file
	Creating an external identifier map file

	Language support
	SGML declaration
	Attribute description files

	Forms
	XMetaL Forms Toolkit
	Create a form
	Binding a form to XML content
	External data
	Connect to an external data source

	Associate a form with a customization object
	Executing a form as a modal dialog in XMetaL
	Sample forms

	Editor display styles
	CSS editor
	Creating selectors
	XMetaL-specific selectors
	Create a selector
	Custom selectors

	Setting style properties
	Extensions properties

	View support for properties and selectors
	Using counters and autonumbering
	Formatting elements as tables
	Example style rules

	Resource Manager
	Configuring the Asset Manager
	Creating asset types
	Asset display file
	Asset catalog file
	Text file and text block assets
	Master asset catalog file

	Remote assets
	Set up a remote assets folder

	Configuring XMetaL
	Adding new toolbar icons
	Frequently used configuration variables
	Configuration variables

	Glossary
	Index

