
Customization Guide

2024 JustSystems Canada Inc.

Contact Information:

Support:
North America: +1 866 647 2003

Sales:
North America: +1 866 793 1542

Office Locations:

XMetaL Sales & Support
Suite 3220

About JustSystems

JustSystems is a leading global software provider with three decades
of successful innovation in office productivity, information management,

666 Burrard Street
Box 207
Vancouver, BC, Canada
V6C 2X8
T: 604-602-9928and consumer and enterprise software. With over 2,500 customers
Toll-Free Sales: 1-866-793-1542worldwide and annual revenues over $110M, the company is continuing

a global expansion strategy that includes its enterprise software offering Tokushima Head Office
called xfy, its XMetaL content lifecycle solutions, and its pioneering work Brains Park Kawauchi-cho
in the definition of the XBRL standard and commercialization of enabling Tokushima-city Tokushima 771-0189
technologies. A Gartner “Cool Vendor” selection in 2008, JustSystems Japan
is also a member of KMWorld’s 100 Companies that Matter in Knowledge T: 088 666 1000
Management for 2008 and the 2007 EContent 100. XMetaL is a 2008 (+81 88 666 1000 from outside Japan)
KMWorld Trend-Setting Product. Major strategic partnerships include
IBM, Oracle and EMC. For more information, please visit
http://www.justsystems.com.

Copyright JustSystems Canada, Inc. All rights reserved. XMetaL is a
registered trademark of JustSystems Canada, Inc. Other product names
may be trademarks or registered trademarks of their respective owners.

Contents

Introduction...6

Creating customizations..7

Before you begin..7

Components...8

File properties..9

Visual Studio .NET Solution Explorer...10

Element properties...11

General..11

Change list..12

Display As..12

Followed by..13

On Insert..14

Text layout..15

Treat As...15

Global properties...16

Virtual element..17

In-Parent element..17

Building a customization..18

Configuring the build environment..18

Debugging a customization..19

Debugging and testing an XMAX customization...20

Customizing using C++..22

Explicit application-level customization support (without using XAC)..22

External event handling in XMetaL...26

Scripts..31

Script editor..32

Creating scripts..32

Create a script...33

Importing scripts...33

Import a script...33

Import scripts from an MCR file...34

Testing scripts..34

Importing data..34

Converting Microsoft Word documents..35

iii© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

PDF and HTML previewing and printing..35

DTDs and schemas...37

Creating a DTD..37

Modifying your DTD..38

Rules files...38

Document type declarations...39

Internal subset...40

Mapping identifiers...41

Catalog files...41

Resolving catalog file entries...42

Catalog support for schemas..43

Finding catalog files...44

Giving priority to system or public identifiers...44

External identifier map file...45

Creating an external identifier map file..46

Language support..47

SGML declaration...47

Attribute description files..49

Forms...50

XMetaL Forms Toolkit...51

Create a form...53

Binding a form to XML content...54

External data..56

Connect to an external data source...57

Associate a form with a customization object...58

Executing a form as a modal dialog in XMetaL..58

Sample forms...59

Editor display styles...60

CSS editor..60

Creating selectors..61

XMetaL-specific selectors..63

Create a selector...63

Custom selectors...64

Setting style properties...64

Extensions properties..65

View support for properties and selectors..65

Using counters and autonumbering...69

Customization Guideiv

Contents

Formatting elements as tables...71

Example style rules..72

Resource Manager..73

Configuring the Asset Manager..73

Creating asset types..75

Asset display file..75

Asset catalog file...76

Text file and text block assets..77

Master asset catalog file..77

Remote assets...78

Set up a remote assets folder..78

Configuring XMetaL..80

Adding new toolbar icons...80

Frequently used configuration variables...81

Configuration variables...81

Glossary...90

Index...96

v© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Contents

Introduction

With XMetaL Developer, you can create custom user environments for XMetaL Author and XMetaL XMAX.
Customizations are created in the Microsoft® Visual Studio .NET development environment.

Creating a customization is a multi-step process. However, the first step requires no development tools at
all. Before beginning any customization you must have a clear definition of the project, including its purpose,
scope, audience, and workflow. Only then is it possible to begin a customization that satisfies your project
plan.

Feedback

Send comments or questions about XMetaL documentation to docs-feedback@xmetal.com.

6© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

mailto:docs-feedback@xmetal.com

Creating customizations

You create and manage the components of your customization in a Visual Studio .NET solution.

You can create a customization solution through the File > New > Project menu.You then choose a solution
template in the XMetaL Projects folder. Follow the wizard to finish creating your customization.

Before you begin
You need to have a project plan and knowledge of the development environment, XMetaL Author, and related
technologies.

Before you start creating a customization you should have a project plan. The objective of the customization
is to achieve the goals set out in your plan. It should reflect the following:

• The tasks you want to perform with your customization

• The order of these tasks

• Dependencies on these tasks

By understanding your project as a series of tasks, you can better design your DTD and determine the scope
of the customization, that is, whether it is an application-level or document-level customization.

In order to work effectively, you also need to have knowledge of the following:

• XML

• DTD or schema

• CSS

• XMetaL Author or XMetaL XMAX

• Visual Studio .NET

7© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Components
A customization solution contains file components that determine the appearance and behavior of elements
and tools in the XMetaL Author or XMetaL XMAX environment. These components are compiled into an
XMetaL Application Customization (XAC) file.

Document Type Definitions or schemas

The Document Type Definition (DTD) or schema (XSD) forms the basis of your customization. After you have
planned the workflow, you should create a DTD or schema if you do not already have one.Your DTD or
schema should support your workflow and the types of information you need to create and manage.

Scripts

Scripts provide access to XMetaL Author or XMetaL XMAX via an object model that is based on the Document
Object Model (DOM) and the Microsoft Word VBA model. Scripts are stored as components (for example,
JScript files) in your customization. These components are visible through the Solution Explorer.You can
create a new script or import an existing script. Scripts are deployed with your customization.

Settings files

Each installation of XMetaL Author contains a global configuration file and a user configuration file.You can
configure XMetaL Author behavior for your customization through the global configuration file. Configuration
files contain one or more variables that are read when you start XMetaL. Each variable is a name-value pair.
The values can be booleans, pathnames, numbers, and strings.

Customization files

Customization (CTM) files contain the customizations carried out by the XMetaL Customization editor. The
customizations for a DTD called dtdname.dtd are saved in dtdname.ctm. The CTM file must reside in the
same folder as the DTD (or Schema or rules file).

Forms

Forms help end-users to create structured content.You can use the XMetaL Forms Toolkit (XFT) to create
forms that can be run from within XMetaL either as modal dialog boxes or embedded within a document. In
addition, you can create forms that are bound to XML content and apply your organization’s business logic
via scripting.

Document templates

Document templates provide outlines and let you create a new document that uses a specific DTD or rules
file. If you want default content to be entered when an element is selected, you can insert replacement text
in the template. This is similar to a user prompt. A template is used when a new file is created with the File
> New command in XMetaL Author.You should create at least one template for each DTD or rules file.

For more information about creating document templates, see the XMetaL Author User’s Guide.

Customization Guide8

Components

Toolbars and menus

Toolbars and menus are created when a new customization project is started. This information is stored in
a toolbar (TBR) file.You can create new toolbars and menus through XMetaL Author while debugging your
customization.

The following components of XMetaL Author are configured based on settings in the toolbar (TBR) file:

• Toolbars (containers for toolbar buttons)

• Toolbar buttons

• Menus (containers for menu items)

• Menu items

XMetaL Author creates toolbars and menus if it opens a customization for which no TBR file is provided.
Modification of toolbars should be handled in XMetaL Author while debugging your customization. To modify
a toolbar or menu, you first create a macro script and save it in the Macros folder for your customization.You
then launch a debugging session and use XMetaL Author to create a new toolbar item (for example, a button)
or menu item.

Note: If you stop the debugging session from XMetaL Developer, your changes to the toolbars are not
saved.

For more information about creating toolbars and menus, see the XMetaL Author User’s Guide.

Style sheets

When you begin a customization solution that contains no existing style sheets or customization files, XMetaL
Developer parses the DTD or schema and generates the following files:

• CSS for the editor view

• CSS for the structure view

• CTM (customization) file

Styling is based on element names. If the names of your elements differ significantly from commonly used
names, or if they are in a language other than English, XMetaL Developer cannot recognize the elements
and cannot assign styles to them. XMetaL Developer recognizes many elements defined in XHTML, DocBook
and the Journalist DTD.

You may need to modify these generated files to obtain the desired appearance or behavior.

File properties
You can specify properties for each component in your customization. Each component has a UseAs property.

UseAs

This property is necessary to communicate to XMetaL Author and XMetaL XMAX the intended purpose of
the item. For example, if you have a file, myitem.xft that is to be used as an XFT form, you must set the
UseAs property to be An XFT Form.

9© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

File properties

Table 1: UseAs values

CommentInternal name used by XMetaL
API

UseAs value

CSS used to add additional formatting to the
styles used for the Structure View.

XMETAL_CSS_STRUCTCSS styles file for Structure view

Not supportedXMETAL_CSS_NORMALCSS styles file for Normal view

Overrides the CSS file assigned the UseAs
type of CSS styles file for Normal view, even
if one is defined.

XMETAL_CSS_DEFAULTDefault CSS styles file

MCR fileXMETAL_MACROSXMetaL Macro Script file

CTM fileXMETAL_CUSTOMIZATIONCustomization file

XFT fileXMETAL_FORMAn XFT Form

TBR fileXMETAL_TOOLBARToolbar File

DTD fileXML_DTDXML DTD

RLX fileXMETAL_XML_RULESCompiled Rules File from an XML
DTD

DTD fileSGML_DTDSGML DTD

RLS fileXMETAL_SGML_RULESCompiled XMetaL Rules File from
SGML DTD

XSD fileXML_SCHEMAW3C XML Schema document

RLDXMETAL_SCHEMA_RULESCompiled rules file from schema

Visual Studio .NET Solution Explorer
You can view and manage all items in your customization within the Visual Studio .NET Solution Explorer.
You are advised to use the XMetaL integrated development environment when working with customizations
in order to take full advantage of XMetaL Developer.

You can open a customization through the File menu. After you select a solution, open the Solution Explorer
by clicking View > Solution Explorer.

You can add items to your customization through the Project menu.You can add items as you need to work
on them or all at once.The number and type of items you can add depends on the scope of your customization.

• For document-level customizations, you can add scripting objects, text files, forms, style sheets, and
customization files.

• For application-level customizations, you can add scripting objects, text files, and forms.

You can add almost any other type of file to your project; however, some items may not be deployed properly
or at all. In the case of DTDs and schemas, it is recommended that you deploy the compiled rules file (RLX
or RLD) instead. This is because external entities are not supported in deployment.

You can modify an item in your customization by selecting it in the Solution Explorer and editing it in the
main view.

You can remove or delete any items from a customization, except for:

Customization Guide10

Visual Studio .NET Solution Explorer

• Macros folder

• References folder or any of its contents

• Rules files

You can remove items from one project, add them to another project, or add them back into the existing
project at a later time.You can also completely remove items from the hard disk by deleting them.You can
remove or delete items through the Edit menu.

You can save changes to your customization through the File menu. Customization files must be saved with
one of the following encodings:

• ASCII

• ANSI

• UTF-8

• UTF-16

In most cases, ASCII will be acceptable; however, the coding you select should be the same as that of your
DTD or Schema.

Element properties
Elements in your customization file (CTM) control the behavior and some aspects of the appearance of the
XMetaL Author or XMetaL XMAX user environment.

You can set properties for elements in your customization file in the Properties pane. The properties of each
element are displayed in rows in the main view. When you click on a row, the element properties appear in
the Properties pane.You can modify the behavior of XMetaL authoring environments by changing properties.

You can set properties on a per-element basis or on a global basis through the #GLOBAL element.You also
have the option of specifying an In-Parent context for an element or a Virtual element.

General
General properties determine basic element characteristics including an alias, if you want to call the element
by a different name, and a description.

Alias

You can enter a real-language name for the selected element in the Alias field.This is useful when the element
name is not very descriptive, or in cases where authors speak a language other than the language of the
DTD. For example, if the element that you want authors to use for main titles is ‘<DT>’, you can use the Name
field to give the element the real-language name ‘Document Title’—or its equivalent in the language of the
authors.

If you do not enter a real-language name for the element, the element name from the DTD is used.This name
is displayed in tags and in the Element List.

Description

You can type a description of the element in the Description text box. If you do not enter a description, the
element name from the DTD is used instead. This text is displayed at the bottom of the Element List.

11© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Element properties

Change list
You can specify which elements are available in the change list in XMetaL Author through the Change list
property.

In XMetaL Author, the change list is displayed at the left end of the Formatting toolbar. The list contains the
names of elements that the current element can be changed to. The Change List dialog displays the list of
valid elements.

Since all configurations in this dialog box are relative to a parent element, you may have to re-configure
several parents in order to cover all contexts in which the element can occur. For example, if you have two
list elements, for example, Bulleted and Numbered, that can occur inside Book, Chapter, Section, and
Para, you must include Bulleted and Numbered in the change list for each parent.

Display As
The Display As properties let you associate forms or controls with an element.

You can specify a form or control by clicking the browse button in the Advanced Display Type property.

XFT Form

You can customize your documents and templates with forms (or dialogs).These are associated with specific
elements to facilitate data entry and the XML authoring process.

You can use the XFT Form Wizard to set up forms that are bound to XML content by an XPath expression.
By using the wizard you can specify the following:

• How to run the form (Embedded or Modal)
• How to display the form (Replace, Before, After)
• When to display the form (Always, Dynamic Script)

If you select Dynamic Script, you must create a script for XMetaL to call before it displays the form. Use this
script to create business rules that determine whether or not to display the form at run-time.

Customization Guide12

Change list

For example, the following script shows how a dynamic display script can be used to conditionally display a
form, depending on the parent of the form node.

// Put this script in the Script Text box of the XFT Form Wizard
// Get the form control
// Its node member is the DOMNode of the element to be tested
var aipc = Application.ActiveInPlaceControl;

// If the node's parent is "Publisher" ...
if (aipc.node.parentNode.nodeName = "Publisher") {
// ... then display the form
aipc.ShouldCreate = true;
}
else {
// ... otherwise do not display the form
aipc.ShouldCreate = false;
}

In-Place Control

You can use in-place ActiveX controls to represent elements in Normal and Tags On views and determine
their behavior. When you specify that an element is to be displayed as an in-place control, you must specify
a script prefix. This prefix is used in your macros to enable the control to communicate with XMetaL.You
also have the option of specifying Bitmap Printing. This option has been provided because some controls
(for example, the Internet Explorer WebBrowser Control) do not print using the standard ActiveX mechanism.
If one of your controls does not print using the default mechanism, you should enable this option.

Refer to the documentation for the ActiveX control to learn about possible limitations and restrictions associated
with the control.

Associate an element with an in-place control
You can use in-place ActiveX controls to represent elements in Normal and Tags On views.

1. In the Advanced Display Type property, select the In-place Control option.

2. In the ProgID/ClsID text box, type the identifier for the control you want to use.

Note: If the control you want to use does not appear in the list, you can find its ClsID or ProgID by
consulting the control documentation for the control or by searching the registry (advanced users
only).

3. Type a script prefix.

4. Set the Use Bitmap Printing option.

5. Click OK.

6. Create the macros that enable the control to communicate with XMetaL.

Followed by
You can configure XMetaL to create an element of your choice when Enter is pressed at the end of a particular
element.

By default, if you press Enter inside a specific block element, XMetaL Author creates a new element of the
same type, if the DTD or schema allows it.You can change the default behavior if it is not permitted by the
DTD or schema, or if you want a different element to be created. The original element must be defined as a
block element in the CSS style sheet for the document.

13© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Associate an element with an in-place control

On Insert
The On Insert properties let you specify default content or a script to be run whenever you insert a particular
element.

You can choose the following from the On Insert Type dropdown:

• None. No content or script is to be inserted.

• XML content. Lets you specify a mini template.

• Script. Lets you specify script and script language.

MiniTemplate

The MiniTemplate property contains the default content for the selected element.You can use this property
to indicate the markup that is to be inserted for this element. The default content can contain replacement
text, which appears in an element by default when the element is inserted. Replacement text is contained in
‘xm-replace_text’ processing instructions.

If no content is specified, XMetaL inserts replacement text based on the element name. For example, for an
element named ‘Para’, the replacement text is ‘{Para}’. XMetaL does not insert replacement text if none is
specified in the Content section and Paragraph is selected in the Treat As section.

The default content must start with the specified element, not a sub-element.This allows you to specify default
attribute values for the element.

Script

You can specify a script to be loaded and run whenever a particular element is inserted. Most scripts are
written in JScript or VBScript, but you can use any language for which you have a scripting engine that
conforms to the Microsoft Scripting Engine Interface. The name of the language must correspond to the
ProgId (for example, PerlScript or Python) of the ActiveX control that implements the script engine.

Inserting a mini-template

For example:

<Title><?xm-replace_text {Book Title} ?><Title>

When the <Title> is inserted, it contains the text ‘{Book Title}’. Authors can select this text
and type over it with real content.

Inserting a script

The following example illustrates the specifying of default content using a template and
using a script.

Consider the following template:

<Warning><Para>
<?xm-replace_text {Warning}?>
</Para></Warning>

The same results can be obtained with this VBScript code:

Selection.InsertElement "Warning"
Selection.InsertElement "Para"
Selection.InsertReplaceableText "{Warning}"

Customization Guide14

On Insert

Note: The Selection.InsertWithTemplate method can be used in a script to insert
elements and their default content.

Related Links
Microsoft Scripting Engine Interface

Text layout
You can set text layout properties to determine how an element appears in Plain Text view. These properties
can be set on a per-element basis or globally.

XMetaL makes XML source files (as displayed in Plain Text view) easier to view by inserting indentation and
line breaks and distinguishing between content and markup. This formatting is called text layout or pretty
printing.You can specify this setting through the Disable Text Layout property in the Global properties.

Text layout properties are also available on a per-element basis. For example, you can

• Preserve space or indent content

• Add blank lines before or after tags

• Change tag color

Layout options are applied to files saved from Tags On and Normal views. These options are also applied
when you switch from Tags On or Normal view to Plain Text view.

Preserve Space

When you turn on Preserve Space for a parent element, any Element Options changes you specify for child
elements are ineffective. If you want to use the Preserve Space option for a parent element, be sure that all
child elements have the appropriate Element Options selected.

Treat As
You can configure XMetaL to treat selected elements as paragraphs, toggling elements, image elements, or
list elements.

You can also rank the elements of each type.Whenever XMetaL can insert a paragraph, image, or list element,
it inserts the first-ranked valid element of the required type. If the first element in the given ranking is not
valid, XMetaL tries to insert the second-ranked element, and so on.

Paragraphs

Designating an element as a paragraph element determines how the element is processed:

• If you attempt to enter text where text is not allowed but where a new paragraph is allowed, XMetaL uses
one of the elements designated as paragraph elements to create a new paragraph element and places the
text inside the new element.

• If you press Enter at the end of any element and there is no followed-by element or required element and
the element cannot be split, XMetaL inserts one of the elements designated as a paragraph element.

• When adding items to the list of elements in the Paragraph Order, only items that have been set as
paragraphs can be added.

15© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Text layout

http://msdn.microsoft.com/scripting/

Toggling elements

You can assign inline elements to the Bold , Underscore , and Italic buttons. When an element
is assigned to one of these buttons, clicking the button inserts an empty inline element at the cursor location
or surrounds selected text with the inline element markup (if the assigned element is valid in that location).
You can also click the button to remove markup for the assigned element from the selected text.

You can also assign an element to a macro. In this case, the macro should be assigned to a toolbar button.

Images

You can designate an element as an image element.The following attributes are available on image elements:

• Source (a filename, a URL, or an entity name used to map to the image)

• Height

• Width

• Alt Text

• Valign

• Scale

Lists

You can use special list editing features to insert and edit list elements. The following list types are available:

• Numbered lists

• Bulleted lists

• Definition lists

Numbered and bulleted lists consist of a list element containing one or more list item elements. Some lists
may have a list header element.

Definition lists are two-part lists that consist of a list element and two kinds of sub-elements: term elements
and definition elements.

Global properties
You can specify some properties for all elements on a global basis. Global properties are available through
the #GLOBAL element.

Disable text layout

This property is set to Yes by default, meaning that all text layout properties for every element are disabled.
In order to set any of the Text Layout properties for any element, this property must be set to No.

Paragraph order

When authors press Enter at the end of a paragraph element, XMetaL inserts a new paragraph element.
The default behavior is to insert the same paragraph element type after the current paragraph.You can use
the Paragraph order to set up a list of elements (which you have previously set as Paragraph types using the
TreatAs property) that XMetaL tries to insert. If XMetaL cannot find a valid element to insert from the list, no
element is inserted.

Customization Guide16

Global properties

Namespaces

You can set unique customization properties to similarly-named elements from different schemas. Namespaces
are displayed in the Customization Editor as prefixes to the element name in the form:

{namespace}:{elementname}

You can edit namespaces by right-clicking on the #GLOBAL element and selecting Edit Namespace Prefix-
URI Map.

Virtual element
Elements that you specify as Virtual elements are added via script in the macro editor with the AddElement()
and AddElementToInclusion() methods.

To add or remove a virtual element, right-click an element and select Virtual Element > Add Entry or Virtual
Element > Remove Entry.

In-Parent element
You can define a context for an element by specifying an In-Parent element. If no In-Parent element is
specified, the properties apply to the element in all contexts.

When you define an In-Parent element you are informing XMetaL Author that the properties assigned to this
element apply only in a specific context. To assign an In-Parent element, right-click an element and select
In-Parent Element.

Assigning an In-Parent element

For example, to assign properties to all Title elements in the following document, you do
not need to specify an In-Parent element. However, to assign properties only to Title
elements that appear within Chapter elements, you need to specify Chapter as the In-
Parent element.

<Book>
<Title>My Book</Title>
<Chapter>
<Title>Welcome to Chapter 1</Title>
<Para>This is a paragraph...</Para>
</Chapter>
<Bibliography>
<Title>This is my bibliography</Title>
<Entry>This is an entry...</Entry>
<Entry>This is an entry...</Entry>
</Chapter>
</Book>

17© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Virtual element

Building a customization
When you build a customization, you compile all of your customization files into a binary distribution file called
an XMetaL Application Customization (XAC) file. The XAC file is deployed to the XMetaL Author or XMetaL
XMAX authoring platforms.

Build options are available through the Build menu.You can check the build status, including warnings and
errors, in the output pane.

After you have built the project, check the task list to view information about the build that may require your
attention before the customization can be deployed.

You can see the results of the build by browsing to the Output folder. The files in this folder are either copied
project files (for example, CSS and INI files) or compiled files (for example, MCR files). DTDs and schemas
are not directly included in XAC files. Instead, they are built into rules files, which are included in the XAC
file.

Related Links
Configuring the build environment on page 18

Before you build your customization for the first time, you may have to configure the build environment.
You can do this by setting project properties.

Deploying customizationsYou can deploy XMetaL customizations by distributing individual files or a single XMetaL
Application Customization (XAC) file.

Configuring the build environment
Before you build your customization for the first time, you may have to configure the build environment.You
can do this by setting project properties.

In most cases, you do not have to set all project properties. However, the general and debugging properties
may have to be set for every customization.You can view these properties by selecting the customization
project folder in the Solution Explorer and clicking View > Property Pages.These properties include general,
debugging, and post-build properties.

Table 2: General properties

DescriptionName

The destination folder for the build files. If no folder is
specified, the subfolder \BuildProject is used.

Output directory

The name of the generated XAC file.Output File Name

Table 3: Debugging properties

DescriptionName

The application to launch when testing your customization.
If you have indicated XMetaL Author in the configuration

Command

list, the default setting for this is the latest version of XMetaL
Author that you have installed on your system. If you have
indicated XMetaL XMAX in the configuration list, there is
no default setting. In addition, you must indicate the
container application that instantiates the XMetaL XMAX

Customization Guide18

Building a customization

DescriptionName

control, or, in the case of an HTML page that contains the
ActiveX control, you must specify Internet Explorer (usually
in the {drive}\Program Files\Internet
Explorer folder, where {drive} is the drive letter of
the installation path).

XMetaL Developer is used by default
XMAX_x64_test.exe/XMAX _x86_test.exe applications
for Debugging and testing an XMAX customization
on page 20.

The command-line arguments to be added. If you have
indicated XMetaL Author in the configuration list, this

Command line

property is typically an XML document based on your
customization.When opening a document in XMetaL Author,
enclose the document path and name in quotation marks
(""). If you have indicated XMetaL XMAX in the configuration
list and your customization has XMetaL XMAX embedded
in an HTML page, this property is the HTML page that
contains the embedded XMetaL XMAX object. If you have
a container application that instantiates XMetaL XMAX, the
arguments have no effect unless your container application
accepts command line arguments.

XMetaL Developer is used by default
XMAX_x64_test.exe/XMAX _x86_test.exe applications
command line arguments for XMAX debugging on
page 21.

The folder that the application specified in the Command
property opens in. It is the default folder for the launched
application.

Working folder

Table 4: Post-build properties

DescriptionName

The application or batch file plus the command-line
arguments added to the call to launch the program.

Command line

The text that Visual Studio .NET displays when the post-
build application runs.

Description

Toggles the post-build application launch on or off.Exclude from build

Debugging a customization
If you are testing your customization using XMetaL Author as your test application, you can quickly move
between XMetaL Author and XMetaL Developer to test and change scripts, style sheets, and customization
files.

When XMetaL Author is launched from inside XMetaL Developer, the following items are added to the Edit
menu:

• Edit CSS file in XMD. By clicking this menu item, the currently-selected element in XMetaL Author is
passed back to the XMetaL Developer environment and the CSS Editor is opened with the element selected.

19© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Debugging a customization

Changes made to any of the display settings are automatically updated once you save the CSS. By returning
to the debugging application, you can immediately see your changes in the document view.

• Edit CTM file in XMD. Clicking this menu item returns control to the XMetaL Developer environment and
opens the CTM Editor. From there you can modify this file and change the behavior of the macros it contains.

Note: Sometimes, complex selectors cannot be resolved, in which case XMetaL Developer asks you
to locate the selector yourself from the list provided in the CSS editor.

If you are testing your customization in XMetaL Author, and you indicate that you want to create a new
document from a template, XMetaL Author uses the DTD or schema for the customization project to create
the new document.

If you are testing your customization in XMetaL Author, and a script stops at a line that contains a run-time
error, you cannot edit the script and continue execution. To continue executing a script after a run-time error,
click Break, then set the next line to be the next statement to be executed by right-clicking the next line and
selecting then select Set next statement from the context menu.You can edit the script only after it has
finished executing. To edit the script after execution is complete, use the Visual Studio .NET script editor.

Note: XMetaL Developer cannot extract SGML declarations from documents in debug mode. Additionally,
documents with internal element declarations (internal subsets) produce errors during the build process.

Related Links
Scripts on page 31

Scripts provide access to XMetaL Author or XMetaL XMAX via an object model that is based on the
Document Object Model (DOM) and the Microsoft Word VBA model.

Debugging and testing an XMAX customization
The XMetaL Developer installation contains container applications for debugging and testing XMetaL XMAX
customization.

Application locations:

• <installation folder>\Developer\Utilities\XMAX_x64_test.exe

• <installation folder>\Developer\Utilities\XMAX_x86_test.exe

Applications support base operation:

• New, Open, Close, Save and Save As document

• Find in document

• Spell check

• Enable/disable document XAC customization

• Enable/disable plain text view

• Find and run customization macros

For testing a customization outside XMetaL Developer, the following operations are supported in
addition to base operations:

• Add, view and modify macros

• View and open customization resources (*.mcr, *.css, *.ctm, etc.) associated with customization

• Reload resources, document or application

• Open new instance of application and documents

Customization Guide20

Debugging and testing an XMAX customization

Command line parameters:

• Load the document in the application XMAX_x64_test.exe "<document full path>"

• Load the document with the customization file for testing without using a Visual Studio debugging
environment: XMAX_x64_test.exe -f="<document full path>" -x="XAC file full path"

Initial UI related command line parameters:

• "Plain Text" is default view: -v=S

• "Tags On" is default view: -v=T

• "Normal" is default view: -v=N

• Enable source view by default (can be turned on/off later in the application UI): -ESV

• Disable XAC customization specified in -x="XAC file full path" (can be turned on/off later in application UI).
Use this parameter for debugging in Visual Studio: -DXAC

• Hide settings and resources specific information (can be turned on/off later in the application UI) : -m

Command line examples:

• XMAX_x64_test.exe "c:\Temp\My documents\example.xml"

• XMAX_x64_test.exe -m -f="c:\Temp\My documents\example.xml" -x=" c:\Temp\My
cusomizations\dtd-subjects.xac"

21© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Debugging and testing an XMAX customization

• XMAX_x64_test.exe -m -ESV -DXAC -v=T -f="c:\Temp\My documents\example.xml" -x= "c:\Temp\My
cusomizations\author.xac"

Customizing using C++
You can extend the functionality of XMetaL by creating an ActiveX control (such as a DLL) in C++. For
example, you can use C++ to create a custom dialog.

The following example uses the Journalist DTD, which is based on DocBook. Here, you create a DLL in
Microsoft Visual C++ and test the output using XMetaL.

Example

You create a new ATL project called Journalist that contains the following:

• An ATL class called CCitation

• A method called NewCitation

• XMetaL interfaces imported from ..\Program Files\XMetaL\Author\xmetal.tlb

You can then test to see if you can call the new object from XMetaL. First, add the following
line to the body of the NewCitation method:

::AfxMessageBox("Inside NewCitation() Procedure!");

After you have built Journalist.dll, open ..\Program
Files\XMetaL\Macros\journalist.mcr using a text editor and add the following
macro:

<MACRO name="InsCite" key="Ctrl+Alt+A" lang="JScript">
var obj=new ActiveXObject("Journalist.Citation");
obj.NewCitation();
</MACRO>

When you start XMetaL, create a new document using the Journalist DTD, and press
Ctrl+Alt+A, XMetaL displays a dialog containing the text you added to the NewCitation
method.

Explicit application-level customization support (without using XAC)

Integrating XMetaL Developer with Microsoft Visual Studio provides efficient tools for XMetaL application-
level customization script debugging. Application-level customization macros apply to all types of documents
opened in XMetaL. The <XMetaL installation folder>\Author\StartUp folder contains a set of
*.mcr files that defines customization scripts and meta information for integration with XMetaL. Complex
customizations can contain hundreds utilities and tens of thousands line of code. XMetaL *.mcr files are
written in xml format. Optional first children of "<MACRO>" tag are "<SCRIPT/>" elements.

<SCRIPT/>" elements allow users to specify the list of script files that XMetaL embeds into the macro during
XMetaL start up initialization.The XMetaL Developer solution provides an efficient way of maintaining, native
editing, navigation and script debugging in Visual Studio. It includes breakpoints, variable watching, XMetaL
API intellisense support, etc.

Customization Guide22

Customizing using C++

<SCRIPT/>" elements contain information about script files' location, language and title (usually it is the name
of the file that appears in Visual Studio during debugging). The "src" attribute contains the relative path to a
referenced script file. The '$SQDIR' variable can be used at the beginning. XMetaL will resolve it as path to
the …\Author folder.

To use this capability in XMetaL Developer, a user should create an XMetaL application-level customization
project. An XMetaL application-level customization based on <SCRIPT/> references in .mcr files does not
use XAC so the initial customization content can be empty. All document files (scripts, macros (*.mcr), forms
(*.xft), *.css styles or any other types) must be added in the Visual Studio "Solution Explorer" tab outside
of the XMetaL Project node as an "Existing item…".

23© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Explicit application-level customization support (without using XAC)

Customization documents are usually located under the <XMetaL installation folder>\Author
folder. To modify them, check that the user has system permissions to modify files and folders. Running
Visual Studio as an administrator is recommended.

The XMetaL Developer installation deploys to the XMetaL Author installation folder, application-level
customization for modifying default XMetaL Developer settings.

1. Run xmetal.exe.

2. Run the XMetaL Developer Settings macro. To do this:

a. Click "Ctrl+?" to open quick navigation tools.

b. Start to type "developer" in the find edit box.

c. Select and run the macro.

d. Check that "Developer installed" and "Advanced script debugging" check boxes are "checked".

Customization Guide24

Explicit application-level customization support (without using XAC)

3. Close XMetaL application

4. Open the script documents in Visual Studio, set breakpoints and start debugging as usual for an XMetaL
customization.

25© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Explicit application-level customization support (without using XAC)

External event handling in XMetaL

While writing XMetaL script customization, some actions require using third-party external applications or
running bat files. These actions can take significant time but it is possible to handle such operations
asynchronously in XMetaL.

XMetaL Customization JScript APIs allow users to:

• Create processes

• Specify command lines

• Run processes asynchronously

The return value of such operations is "process ID".

XMetaL API: Application. RunAfterProcessDone(…) and Application. RunAfterProcessDone2(…) run
XMetaL macros after process (identified by "process ID") termination and XMetaL is in idle state.

A VARIANT type optional parameter type can be passed to Application. RunAfterProcessDone(…). The
assigned XMetaL application-level custom property contains the parameter's value when XMetaL runs the
macro.

Application. RunAfterProcessDone(ProcessID, MacroName, ResourceName, ResourceData);

Application. RunAfterProcessDone2(ProcessID, MacroName, ResourceName, ResourceData);

Runs the XMetaL macro after process termination.

Returns: No return value.

Customization Guide26

External event handling in XMetaL

Parameters:

• ProcessID: long - application process id for monitoring the "process terminated" event

• MacroName: string - macro name to run

• ResourceName: string - XMetaL Application level Custom Property name

• ResourceData: VARIANT - value of "ResourceName" property. "ResourceName" property is valid only
during "MacroName" macro execution.

Helper methods:

Application. IsProcessRunning(ProcessID);

Checks if a process is running.

Returns: boolean true if process is running. otherwise false

Parameters:

ProcessID : long - application process id

Application.TerminateProcessEx (ProcessID, Parameter1, Parameter2, Parameter3);

Terminates a running process.

Returns: long - internal use value.

Parameters:

ProcessID : long - application process id to terminate

Combination of Parameter1, Parameter2, Parameter3

0 : 0: 0 - "brute force" to terminate process. Uses windows API TerminateProcess(…)

-1 : 0 : 0 - find window by process id and send WM_CLOSE message

-1: -1: 0 - find window by process id and post WM_CLOSE message

Parameter1: contains window handle (> 0)

Parameter1: 0 : 0 - send WM_CLOSE message to window

Parameter1: -1: 0 - post WM_CLOSE message to window

Parameter2: > 0 use windows API SendMessageTimeout(…)

::SendMessageTimeout(xxx, WM_CLOSE, 0, NULL, Parameter3, Parameter2, …);

XMetaL APIs:

• Application. AddFileChangeMacro(filePath, macroName, propertyName, propertyValue)

• Application. RemoveFileChangeMacro (filePath, macroName)

• Application. IsFileChangeMacro (filePath, macroName)

Allow file changes on the local file system to be monitored and XMetaL macros run when events occur and
XMetaL is in idle state.

A parameter that specifies the local file system folder and file name can include wildcard characters (for
example, an asterisk (*) or a question mark (?)) in the file name. The "file changed" event triggers running
the XMetaL macro " macroName" . XMetaL sets the "$FileChangedPath" application-level custom property
to the file path of the changed file. A VARIANT type optional parameter can also be passed to Application.

27© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

External event handling in XMetaL

AddFileChangeMacro (…).The assigned XMetaL application-level custom property contains the parameter's
value when an XMetaL macro is running. Both properties are valid only during the macro execution.

Application. AddFileChangeMacro(filePath, macroName, propertyName, propertyValue)

Monitors file change events and runs a macro when file content changes.

Returns: long - non zero if operation succeeded.

Parameters:

• filePath : string - local file system path to file for monitoring "file changed" event.

File name part can include wildcard characters (for example, an asterisk (*) or a question mark (?) for
monitoring changes in multiple files.

• macroName : string - macro name to run

• propertyName : string - XMetaL application-level custom property name

• propertyValue : VARIANT - value of "propertyName" property. "propertyValue" property is valid only during
"macroName" macro execution.

Application. RemoveFileChangeMacro (filePath, macroName)

Removes the monitoring of a file change event.

Returns: long - number of objects that are monitoring "file changed" events. Object is identified by "filePath
+ macroName" string.

Parameters:

• filePath : string - local file system path to the file for monitoring the "file changed" event.

• macroName : string - macro name to run. If macroName is an empty string, then remove all macros
associated with filePath.

Application. IsFileChangeMacro (filePath, macroName)

Checks if the file change event "filePath + macroName" is monitored.

Returns: long - number of objects that are monitoring "file changed" events. The object is identified by the
"filePath + macroName" string.

Parameters:

• filePath : string - local file system path to file for monitoring "file changed" event.

• macroName : string - macro name to run. If macroName is an empty string, then return the number of all
macros associated with filePath.

XMetaL API Application. RunMacroOnIdle(MacroName, mlsDelay, propertyName, propertyValue)

Runs the macro specified by the "MacroName" on idle.

Returns: long - 1 if macro was added to queue - 0 otherwise.

Parameters:

• MacroName : string - macro name to run

• mlsDelay: long - minimum delay interval in millisecond before macro can run

• propertyName : string - XMetaL Application level custom property name

Customization Guide28

External event handling in XMetaL

• propertyValue : VARIANT - value of "propertyName" property. "propertyValue" property is valid only during
"MacroName" macro execution.

XMetaL API Application. RunMacroOnIdle(MacroName, mlsDelay, propertyName, propertyValue)
pushes a macro into the queue of macros that XMetaL runs in idle state. An optional command line parameter
can set a minimal delay interval in milliseconds before the macro can run. The VARIANT type optional
parameter "propertyValue" can be passed to Application. RunMacroOnIdle(…). The assigned XMetaL
application-level custom property contains the parameter's value when the XMetaL macro runs.

This API prevents the interruption of time-sensitive actions or macros being execution (for example xmetal
ON_UPDATE_UI event macros).

The XMetaL installation folder contains the helper application RunXMetaLMacro.exe, which runs a macro
when (or if) XMetaL is running and in idle state.

 RunXMetaLMacro.exe [-x=1] -mn="<macro name>" [-mp="<parameter name>"
-mv="<parameter value>"]

The mandatory parameter -mn="<macro name>" runs the macro.

The optional parameter "-x=1" forces xmetal.exe to launch if it is not running.

Optional parameters -mp="parameter name" and -mv="parameter value" type string define the XMetaL
application-level custom property that is valid only when <macro name> macro is running.

The XMetaL installation folder contains the helper application XMProjWait.exe, which is a "minimal system
resources consuming process" that can be terminated any time without affecting application integrity. Optional
command line parameters can set a time interval in milliseconds after which the process terminates itself. It
allows using it as an "external global, out of process variable or event" for avoiding concurrent access to
XMetaL script resources.

The XMetaL Developer installation contains an example of using the "XMetaL External Event Handling API"
in an XMetaL application-level customization. The example is located in the
C:\ProgramData\SoftQuad\Developer\Samples\AsynchronousEventHandling\Author folder.
Copy the contents of this folder to the Author folder in the XMetaL Author 16.0 or higher installation folder.

The example can be demonstrated in the following test scenario:

Scenario:

1. Run the File changed XMetaL API example macro. It opens the modeless dialog that allows:

a. Select the word under the cursor or select text in the open document.

b. Save to a temporary file: selected text, information about the selected text location in an open document,
an open document xml content .

c. Select and launch a third-party application and pass the temporary file as command line parameters.

d. Watch and change the status of running applications and "temporary file changed" events tracking.

2. When the "temporary file changed" event occurs:

a. Cancel listening to the "temporary file changed" event.

b. If the temporary file contains a list of suggestions for inserting/replacing the original text:

• Show the XFT form modeless dialog with the notification.

• Open or activate the original document and move the section to its original location.

29© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

External event handling in XMetaL

• Show XFT form modeless dialog with options: to insert/replace new text, or start new instance of
the third-party application with the new text as the parameter.

3. When the "application terminated" event occurs:

a. Cancel listening to the "temporary file changed" event, and remove the "temporary file".

4. When the "XMetaL close" event occurs:

a. Close all "temporary file changed" events.

b. Terminate all applications.

File changed XMetaL API example (silent) macro runs the last third-party application with Active Document
selected as parameter.

Customization Guide30

External event handling in XMetaL

Scripts

Scripts provide access to XMetaL Author or XMetaL XMAX via an object model that is based on the Document
Object Model (DOM) and the Microsoft Word VBA model.

The following defintions apply:

• A macro is a set of instructions consisting of condition statements, API commands, and functions.

• A function can run other macros but must be contained inside a macro, though it is not a macro itself.

Scripts are stored as components (for example, JScript files) in your customization. These components are
visible through the Solution Explorer.You can create a new script or import an existing script. Scripts are
deployed with your customization.You are advised to test your scripts before you deploy them.

For more information on scripting for XMetaL Author and XMetaL XMAX, see the XMetaL Programmer’s
Guide.

Table 5: Script properties

DescriptionName

The filename of the macroName

The description of the macroDescription

The filepath to (location of) the scriptFilePath

Indicates whether or not the macro is hidden from the userHidden

The scripting languageLanguage

The name given to the script at the time of its creationMacroName

The Hot Keys assigned in XMetaL Author to launch the
script

ShortcutKey

Indicates the UseAs typeUseAs

Macros folder

Scripts that are included in the Macros folder become XMetaL Author macros and are deployed in an MCR
file that you create when you build your project.

All scripts inside the MCR file are surrounded with <MACROS> and </MACROS> element tags Individual
scripts are denoted by <MACRO> and </MACRO> element tags.

<MACROS>
<MACRO>
.
// Macro one
.
</MACRO>

<MACRO>
.
// Macro two
.
</MACRO>
</MACROS>

31© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Script editor
The script editor is part of the integrated development environment. It appears when you create or open a
script.

Creating scripts
You have the option of inserting new scripts as separate files within your project or including them in the
Macros folder. When you build your customization, all scripts included in the Macros folder become XMetaL
macros.

When you create a script, you can specify the following options.

• Macro Name. You can select from the list of built-in macro events fired by XMetaL Author or XMetaL XMAX,
or you can type a name for a new macro file.

• Select scripting language for new macro. By default, JScript and VBScript are provided. A single macro
file can contain any of these types of scripts, or any combination of them.

Note: You can add a Perl script or Python script to your XMetaL project (provided the scripting language
is installed), however, there may be some Intellisense limitations and you may not be able to use
breakpoints in these scripts.

• Insert as separate script file. If you want this script to be a separate file in your project, check this option
and type a name. The new file appears as a standalone file that is part of your project. However, it is not
added to the Macros folder and it is not treated as an XMetaL macro.

Customization Guide32

Script editor

Create a script
You create a new script through the Create Script File dialog box. After you create the script, you can edit it
in the script editor.

1. Select your project in the Solution Explorer.

2. Click Project > Add New Item and select a Macro Script template.
The Create Script dialog box opens.

3. Type a name, select the scripting language, and set the Insert as separate script file option.

4. Click Finish.
The script editor opens. Some script is automatically added to the macro to enable IntelliSense functionality.
Do not delete or modify this automatically-generated script; simply begin your own script below the existing
code.

Importing scripts
You can import individual scripts or an entire file of scripts (an MCR file containing multiple scripts) into your
XMetaL customization.

Individual scripts are stored as components and are visible in the Solution Explorer.When you import a script,
you have the option of including it in the Macros folder. When you build your customization solution, scripts
within the Macros folder become XMetaL macros and are stored in an MCR file.

You can also import all of the scripts within an existing MCR file. When you import scripts this way, they are
added to the Macros folder.

Import a script

1. Select your project in the Solution Explorer.

2. Click Project > Add Existing Item.

3. Browse to the folder containing your script and click Open.

33© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Create a script

The Import as Macro dialog opens with the fields you can use to control the behavior of the macro.

Import scripts from an MCR file

1. Select your project in the Solution Explorer.

2. Click Project > Import XMetaL Macros.

3. Browse to the folder containing the MCR file and select it.

4. Select the macros you wish to add and click Add.

Testing scripts
You can test your script within a debugging session without having to deploy your customization.

Note: This information applies to document-level applications only.

In order for your scripts to properly run in the target application (XMetaL Author or XMetaL XMAX), you may
first have to set the build properties.

There are some conditions during a debugging session when you cannot edit an XMetaL script. Scripts that
create fatal crashes of the scripting engine may result in instability and crashes in XMetaL as well.

For more information on editing scripts during a debugging session, See Debugging Customizations.

Importing data
You can import data from a database using the Import Table dialog.This dialog is implemented using a macro.
You can update data you have imported also using a macro.

Using the Import Database dialog, you can create a table in your document based on the contents of a
database or spreadsheet file. When you create a query, the parameters are saved to a file that can be used
to refresh the data.

To allow users access to this functionality, you must add macros to your customization. For an example
implementation, see the Import Table and Update Table macros in the sample macro file
Macros\journalist.mcr. These macros may be customized for your DTD and local file system and
attached to menus or toolbars.

The Import Database dialog box is implemented by the DBImport interface.

In order to use the Import Database dialog, the following components must be installed before you install
XMetaL:

• Microsoft Data Access Components (MDAC). If you do not have MDAC installed when you install XMetaL,
the XMetaL installer offers to install it.

• Windows Scripting Engine. This is installed when you install Internet Explorer; you can also download the
most recent version of the scripting engine from here.

For more information about the DBImport interface, see the XMetaL Programmer’s Guide.

Customization Guide34

Import scripts from an MCR file

http://msdn.microsoft.com/en-us/library/ff729665%28v=VS.94%29.aspx

Converting Microsoft Word documents
One method of converting Microsoft Word documents to XML is through a Visual Basic script.You can see
a sample implementation in the Journalist customization.You can create your own solution for converting
Word documents by adapting the Journalist example.

The Journalist customization includes a macro that converts the paragraph and character styles used in your
MS Word document, as well as various Word objects such as graphics, lists and tables, to specific elements
in the Journalist DTD. Any content within the Word document that has been tagged with a style not supported
by the macro is converted to a processing instruction.

The macro script is contained in the following VBScript file:
..\XMetaL\Author\macros\journalist_openword.vbs.

To see how the script works, create a new document using the Journalist DTD and click the Open Word

Document on the toolbar.You can convert the following sample Microsoft word document:
..\XMetaL\Author\Samples\Cameras\Word\CamerasInFocus.doc.

PDF and HTML previewing and printing
Your XMetaL Author customization can include support for PDF and HTML previewing and printing. This
functionality is added via macros. An example implementation is included in the Journalist customization.

You can customize XMetaL to print, view, and save documents in Adobe(TM) PDF and HTML format. The
macros you create should be JScript and they should be included in the MCR file. (Ensure that the Insert
this as a separate script file option is unchecked.) The table below indicates the method that should be
added to each macro following the auto-generated script. See the XMetaL Programmer’s Guide for more
information.

Before you begin, check the following:

• You have Adobe Acrobat(TM) Reader (with Web browser integration enabled) installed on your computer

• Your customization does not include the On_Before_Document_Preview macro (if it does, you must remove
it)

Table 6: PDF support macros

NotesInclude this methodCreate this macro

This macro allows you to specify PDF
formatting. After you have deployed

XMLToPDFSetupSetup PDF

your customization, you should run this
macro before you save as PDF for the
first time or if you want to change the
PDF settings.

This macro allows you to save as PDF.
You should customize the XMetaL

saveAsPDFSave as PDF

Author user interface to allow easy
access to this macro through a toolbar
button, menu item, or shortcut key.

This macro allows you to view and print
PDF.You should customize the

previewPDFView PDF

35© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Converting Microsoft Word documents

NotesInclude this methodCreate this macro

XMetaL Author user interface to allow
easy access to this macro through a
toolbar button, menu item, or shortcut
key.

Table 7: HTML support macros

NotesInclude this methodCreate this macro

This macro allows you to specify HTML
formatting. When you run this macro,

XMLToHTMLSetupSetup HTML

it creates an XSLT file used to generate
HTML output from an XML document.
The file is saved in the same folder as
the CSS file.

This macro allows you to save as
HTML.You should customize the

saveAsHTMLSave as HTML

XMetaL Author user interface to allow
easy access to this macro through a
toolbar button, menu item, or shortcut
key.

This macro allows you to view and print
HTML.You should customize the

previewHTMLView HTML

XMetaL Author user interface to allow
easy access to this macro through a
toolbar button, menu item, or shortcut
key.

Customization Guide36

PDF and HTML previewing and printing

DTDs and schemas

A Document Type Definition (DTD) or schema forms the basis of your customization of XMetaL. After you
have planned the workflow, you need to create a DTD or schema.You typically do this using a third-party
tool.You have the following options:

• Create a new DTD. You need to determine the elements and attributes required by your documents.You
then need to define the document structure.

• Modify an existing DTD. You may already have a DTD or schema that you want to use in your
customization, but it requires changes to the elements and attributes or structure.

• Use an existing DTD without modifications. As with the previous options, you need to have an
understanding of the elements attributes and structure.

You can edit elements and attributes within the schema viewer in the XMetaL Developer integrated development
environment.

Although XML files can exist as well-formed standalone documents, most XML documents that you edit in
XMetaL Author will be associated with either a document type definition or schema. DTDs and schemas
facilitate the exchange of information, enabling it to be easily passed between systems and people. SGML
files must be associated with a DTD or rules file. Schemas cannot be used with SGML documents.

A DTD is a file that describes document content and structure by means of declarations written in a formal
notation defined in the SGML and XML standards. A DTD defines the names of elements that can be used
in documents and describes their hierarchy.

Schema support

Like DTDs, schemas describe the document content and structure, but they are written in XML. XMetaL
Author supports schemas with the following limitations:

• Identity-constraint definitions are ignored

• The instance attributes xsi:nil and xsi:type are ignored, and cannot be edited in Normal or Tags On
view

Wildcards are not fully supported in XMetaL:

• The xsd:anyAttribute is not supported

• The xsd:any processContents=skip and the xsd:any processContents=lax process contents
controls are not supported

• xsd:any processContents=strict is supported, but the elements used must be imported using
<xsd:import>

Creating a DTD
A DTD can consist of a group of files that includes a root file.

A DTD can consist of the .dtd file and one or more files including:

• DTD fragments

37© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

• Entity declarations (for example, in catalog files)

• An SGML declaration

• An attribute description file

All required DTD fragments and entity files must be at the locations specified by the identifier used to refer
to them. For example, a DTD fragment may be referenced in the following entity declaration in the DTD:

<!ENTITY % calsdtd PUBLIC "CALS Table DTD" "dtds/cals.dtd">
%calsdtd;

In this case, the required fragment should be in the file cals.dtd, located in the folder dtds, which is in the
same folder as the DTD file.

The SGML declaration should be located in the same folder as the DTD file and should carry the same name
as the DTD and the extension .dec or .dcl.

Similarly, the attribute description file should be located in the same folder as the DTD file and should carry
the same name as the DTD and the extension .att.

Modifying your DTD
You can modify elements and attributes using the XMetaL Developer integrated development environment.

When you open your DTD or schema through the Solution Explorer, you can edit properties of the elements
and attributes in your DTD or schema.

XMetaL supports the following content types:

• Mixed content (a mixture of element and character data)

• Element content

• Character data (CDATA)

• Parsed character data (PCDATA)

• Any content (any or none of the different sets above)

• Empty (no content)

Rules files
When you build your customization, the DTD or schema is compiled into a smaller binary file called a rules
file. This binary file is deployed with your customization and used by XMetaL Author or XMetaL XMAX when
determining the rules definition for the customization.

Rules files for XML files have a .rlx extension, those for SGML files have a .rls extension, and those for
schemas have a .rld extension. In most cases, no extra work is required to create the compiled rules file,
as the compilation and inclusion in the XAC file is automatic. However, you can choose to manually compile
a rules file using either Rules Maker or the mkrls command-line tool.

Note: When you open or create a document that uses a DTD for which there is no corresponding rules
file, XMetaL compiles a rules file and uses it instead of the DTD. If the DTD is changed, the rules file
must be deleted so that XMetaL can automatically recompile a new rules file.This rules file has the same
format as a rules file generated by Rules Maker.

Customization Guide38

Modifying your DTD

Using Rules Maker

You can start Rules Maker from ..\XMetaL\Developer\bin\XMmkrules.exe.You need to select a
DTD.You can also choose other files, identifiers, and options.

Using the mkrls command-line tool

You can start the Rules Maker command line tool by opening a command window at
..\XMetaL\Developer\bin. Type mkrls followed by options, followed by the DTD filename.

Table 8: Command line options

DescriptionOption

Defaults to dtdname.rlx if the -x option is used, and
dtdname.rls otherwise

-o rulesfile_name

OASIS catalog file-E catalog_file

SGML declaration file-S SGML_declaration_file

Attribute description file-h attribute_help_file

Root element (If the first element declared is not the logical
top-level element, you should use this option)

-n root_element_name

Do not report ambiguous content-a

Do not check elements used-c

Do not display warnings-q

Create attribute description file-t

Document type declarations
An XML or SGML document starts with a document type declaration that associates it with a specific DTD
or schema.

Here is an example of a document type declaration:

<DOCTYPE BOOK PUBLIC "-//Justsystems//Book v1.0//EN" "book.dtd">

The DOCTYPE keyword is followed by the document type name. By default, this is the top-level element in
the DTD or rules file.

External identifiers

The DOCTYPE keyword associates the document with a DTD or rules file using an external identifier. An
external identifier consists of the keyword SYSTEM or PUBLIC, followed by one of the following:

• A system identifier

• A public identifier followed by a system identifier

• A public identifier (SGML only)

The system identifier can be a filename or URL.

39© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Document type declarations

Each identifier consists of a string of characters enclosed by quotation marks.The system identifier is generally
the DTD or rules file, and the public identifier is an arbitrary identifier. Usually, DTDs that are used by a large
number of organizations have a standard public identifier.

Examples

The following document type declarations can be used to refer to the same DTD. The
name after the word DOCTYPE is usually the name of the top-level element in the rules
file; in these examples, that element is BOOK.

<!DOCTYPE BOOK PUBLIC "-//Justsystems//Book v1.0//EN" "book.dtd">

The keyword PUBLIC indicates that the first identifier that follows it is the public identifier.
This document type declaration refers to a DTD that has the public identifier
-//Justsystems//Book v1.0//EN and the system identifier book.dtd.

<!DOCTYPE BOOK SYSTEM "book.dtd">

The keyword SYSTEM indicates that the identifier that follows it is the system identifier.
If the external identifier starts with SYSTEM, there cannot be a public identifier. This
document type declaration refers to a DTD that has the system identifier book.dtd.

There is a third possibility for SGML documents only:

<!DOCTYPE BOOK PUBLIC "-//Justsystems//Book v1.0//EN">

The keyword PUBLIC indicates that the identifier that follows it is the public identifier. In
this example, there is no system identifier. (DOCTYPE declarations in XML documents
must include a system identifier.) This DOCTYPE refers to a DTD that has the public
identifier -//Justsystems//Book v1.0//EN.

Internal subset
Instead of, or in addition to, the external identifier, the document type declaration can have an internal subset
containing further declarations.

The internal subset is enclosed in square brackets and follows the document type name and the external
identifier (if there is one). Here is an example:

<DOCTYPE Article SYSTEM "journalist.dtd" [
<ENTITY Title "Weasel populations in a forest in Poland">
...
]>

The internal subset can contain attribute list and entity declarations. Declarations in the internal subset are
read before those in the external DTD or rules file; therefore, they override any external declarations. Duplicate
element declarations are not allowed. Attribute list declarations specifying different attributes of the same
element are combined.

A document type declaration can omit the external identifier thus making the document’s DTD internal, that
is, completely contained in the internal subset. For example:

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE Article [
<!Element Article (Title, Sect1+)>
<!Element Title (#pcdata)>
<!Element Sect1 (Title,Para+)>
<!Element Para (#pcdata)>
<!Attlist Article Id ID #IMPLIED>

Customization Guide40

Internal subset

]>
<Article> ... </Article>

The internal subset can also refer to an external DTD using a parameter entity reference. In the following
example, %journalist.dtd; is the parameter entity reference:

<?xml version="1.0"?>
<!DOCTYPE Article [
<!Entity % journalist.dtd SYSTEM "journalist.dtd">
%journalist.dtd;
]>
<Article> ... </Article>

When users create an entity with the XMetaL Author Tools menu, the declarations are placed in the document’s
internal subset. If the internal subset contains any declarations other than entity declarations, they are read-
only in Tags On and Normal views, and the entity-creation commands are unavailable.

Note: Internal subsets in SGML documents are not supported.

Mapping identifiers
XMetaL uses the OASIS catalog mechanism to associate an external identifier in a document type declaration
or external entity declaration with a DTD, rules file, or entity file. This mechanism can also be used to specify
an SGML declaration or associate an entity name with a filename.

You typically use the catalog mechanism in the following situations:

• If the document type declaration contains only a public identifier

• If the DTD or rules file is not stored in the Rules folder

• If the system identifier in the document type declaration does not match the DTD or rules file that you want
to use

If XMetaL cannot resolve the external identifier using the catalog mechanism, it tries to resolve the external
identifier using the following methods, in the following order:

1. It attempts to find an entry in the external identifier map file, extid.map. This mechanism is provided for
backward compatibility with previous versions of XMetaL, and can be disabled.

2. It attempts to retrieve the system identifier as a URL (relative to the document instance).

3. It attempts to retrieve the system identifier as a file path (relative to the document instance).

For the complete specification of the catalog mechanism, see OASIS Technical Resolution 9401:1997.

Catalog files
XMetaL reads one or more catalog files, which can contain several types of entries. It reads these files until
it finds a matching entry. XMetaL supports a set of keywords that can be used in a catalog file.

Interpret relative paths in the catalog file as relative to absolute-path
instead of relative to the location of the catalog file (the default). For example,
a catalog file may contain these entries:

BASE "C:\Windows\Applications\XMetaL"
SYSTEM "mydoc.dtd" "DTDs/mydoc.dtd"

BASE absolute-path

41© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Mapping identifiers

http://www.oasis-open.org/html/a401.htm

In this case, the full path for mydoc.dtd is
C:\Windows\Applications\XMetaL\DTDs\mydoc.dtd.

If a matching entry is not found in the current catalog file, search in
catalog-file. If no matching entry is found there, return to the normal
catalog sequence.

CATALOG catalog-file

If searching for a public identifier match, and partial-public-id matches
a substring of the identifier starting at the first character, search in

DELEGATE partial-public-id
catalog-file

catalog-file for a match and do not return to the normal catalog
sequence.

If the document type declaration specifies document-type-name, then
use filename as the DTD file.

DOCTYPE
document-type-name
filename

Use filename as the replacement text for the external entity
entity-name.

ENTITY entity-name filename

If the SGML document contains a LINKTYPE declaration that contains
public-id, then use filename as the replacement text.

LINKTYPE public-id filename

Use filename as the content of the notation notation-name.
NOTATION notation-name
filename

If YES is specified, public identifiers and entity names are preferred to
system identifiers when attempting to find a match for an external identifier.

OVERRIDE YES|NO

If NO is specified, and an external identifier contains a system identifier,
then the public identifier (if there is one) and entity name is be used when
attempting to find a match for the external identifier.

If an external identifier (for example, in an entity declaration or document
type declaration) contains the public identifier public-id, use filename
to resolve the external identifier.

PUBLIC public-id filename

Use filename as the SGML declaration for the SGML file.
SGMLDECL filename

If an external identifier (for example, in an entity declaration or document
type declaration) contains the system identifier system-id, use filename
to resolve the external identifier.

SYSTEM system-id filename

Declarations can contain comments, which start and end with a double
hyphen (--). For example:

-- Catalog entries for the Caracas project --

-- (comment notation)

Resolving catalog file entries
Catalog file entries can be resolved using a public identifier, a system identifier, or an entity declaration.

Customization Guide42

Resolving catalog file entries

Using a public identifier

PUBLIC "ISO 8879-1986//ENTITIES Added Latin 1//EN" "isolat1.ent"

The PUBLIC entry in the catalog associates the public identifier ISO 8879-
1986//ENTITIES Added Latin 1//EN with the filename isolat1.ent.This catalog
entry can be used to resolve the following entity declaration in a DTD:

<!ENTITY % isolat1 PUBLIC "ISO 8879-1986//ENTITIES Added
Latin 1//EN">
%isolat1;

When XMetaL encounters the %isolat1 entity reference, it scans the declaration of
isolat1 and finds a public identifier. It then looks in the catalog file for a public entry
matching the same identifier. The filename specified in this entry (isolat1.ent) is then
used as the replacement for the entity reference.

Note: Filenames can contain absolute or relative paths or URLs. Relative filenames
are interpreted as relative to the location of the catalog file, unless the catalog file
contains a BASE entry.

Using a system identifier

SYSTEM "sqdoc.dtd" "sqdoc-xml.dtd"

Here, the system catalog entry associates the system identifier, sqdoc.dtd, with the
filename sqdoc-xml.dtd. This catalog entry is used to resolve the following document
type declaration:

<!DOCTYPE DOC SYSTEM "sqdoc.dtd">

When XMetaL reads this declaration in an SGML or XML document, it finds the system
identifier, sqdoc.dtd, and looks in the catalog file for a system entry matching that
identifier.The filename found (sqdoc-xml.dtd) is used as the DTD file for the document.

Using an entity declaration

ENTITY face1 "c:\project1\smallfaces\face1.gif"

The entity catalog entry associates the entity name, face1, with the filename face1.gif.
When XMetaL encounters a reference to the external entity, it scans the declaration of
face1 for a system or public identifier. It then reads the catalog file, looking for system or
public entries specifying these identifiers. If it does not find any such entry, it then looks
for a matching entity entry. The file face1.gif is used as the replacement for the entity
reference.

Catalog support for schemas
If you wish to use catalogs with schemas, you need to be aware of special syntax requirements both in the
catalog entry and in your schema.

43© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Catalog support for schemas

In order to support catalogs for schemas, you must set up your catalog for the public identifier. For example,
suppose your document looks like this:

<Article xmlns="AAA//BBB CCC//XML">
</Article>

If you want to validate against Article.dtd or Article.xsd, your catalog file must have the following entry:

PUBLIC "AAA//BBB CCC//XML" "Article.xsd"

Note: You must ensure that Article.xsd uses a TargetNamespace that is a fixed attribute of ‘xmlns’.

Finding catalog files
By default, XMetaL uses the document name to find a catalog file. There is a default searching order.You
can also specify alternate catalog files.

For example, if the current document is called docname.xml and it is located in the folder called docfldr,
XMetaL searches for the following files, in the following order:

1. docfldr\docname.soc (a file called docname.soc in the same folder as the XML/SGML document)

2. docfldr\catalog (a file called catalog)

3. docfldr\catalog.soc

4. Rules\catalog (a file called catalog in the Rules folder)

5. Rules\catalog.soc

The root catalog may have links to other catalog files.You can specify alternate catalog files from within a
catalog file using the CATALOG and DELEGATE keywords.

A catalog file entry such as

CATALOG "catalog2"

specifies an alternate catalog file. If XMetaL does not find a matching entry in the current catalog file, it reads
the alternate file. If no matching entry is found, XMetaL continues with the next catalog file in the normal
sequence. A catalog file can contain several CATALOG entries.

A catalog file entry of the form

DELEGATE public-id-prefix catalog-file

can be used if XMetaL is currently attempting to match a public identifier, though PUBLIC entries take
precedence. If XMetaL encounters one or more DELEGATE lines (in a single catalog file) in which the public-
id-prefix matches a substring of the public identifier in question (starting at the first character) then XMetaL
looks for matching entries in the catalog files specified by the DELEGATE entries. It does not return to the
normal sequence of catalog files.

Giving priority to system or public identifiers
The system identifier (if there is one) in an external entity declaration is generally the actual name of the file
represented by the entity. Sometimes, however, this may not be the case, and the catalog mechanism provides
the option of using other means to obtain the filename.

If the catalog file contains a system entry matching the system identifier in question, then the filename specified
in that entry is used to resolve the entity reference.

Customization Guide44

Finding catalog files

If the catalog file contains the entry

OVERRIDE YES

and there is no matching system entry, then

• If the entity declaration contains a public identifier, and a matching public entry is found, the filename
specified in that entry is used to resolve the entity reference.

• If a matching entity entry is found, the filename specified in that entry is used to resolve the entity reference.

• Otherwise, the system identifier is used to resolve the entity reference.

If the catalog file contains the entry

OVERRIDE NO

and there is no matching system entry, then the system identifier is used to resolve the entity reference. In
this case XMetaL does not attempt to match the public identifier or entity name.

An OVERRIDE YES or OVERRIDE NO entry is in effect until the end of the current catalog file, or until an
OVERRIDE entry with the opposite setting is encountered.

The default mode (YES or NO) is set using the OASIS_override setting in the XMetaL configuration file.
The default setting is true (YES).

External identifier map file
If the catalog cannot resolve a public identifier, XMetaL uses the external identifier map file for mapping the
external identifier in a document type declaration to the name and location of a DTD or rules file.

This external identifier map file is used in the following situations:

• If the document type declaration contains only a public identifier

• If the DTD, schema, or rules file is not stored in the Rules folder

• If the system identifier in the document type declaration does not match the DTD or rules file that you want
to use

• If you want to use regular expressions to match a set of public or system identifiers and map them to a set
of filenames

The external identifier map file is, by default, extid.map.You can use a different file by specifying a value
for extid_map in the XMetaL configuration file.

The external identifier map file consists of lines in this form:

public-id system-id DTD/rulesfile

The first two values are strings or patterns that match the public and system identifiers respectively.The third
value is the name of the DTD or rules file that these identifiers refer to. Here is an example:

"-//Justsystems//Book v1.0//EN" ! book.dtd

If you open a file whose document type declaration contains the public identifier -//Justsystems//Book
v1.0//EN, XMetaL scans the external identifier map file until it comes to the line in the example. It sees that
the two identifiers match, and therefore it looks for book.dtd.The exclamation mark (!) is a special character
that means ‘match any identifier’, so in this example it does not matter what the system identifier is, or if one
is present.

45© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

External identifier map file

Note: You can disable the external identifier map mechanism by setting use_extid_mapping to false
in the XMetaL configuration file.

Creating an external identifier map file
Map file entries can specify a public identifier, an alternate DTD or rules location, or they can map one system
identifier to another.

XMetaL needs to refer to the external identifier map file, extid.map, only when the document type declaration
does not have a system identifier that is the same as the filename of a DTD or rules file stored in the Rules
folder.

Using a public identifier only

For SGML documents, the document type declaration may contain only a public identifier:

<DOCTYPE BOOK PUBLIC "-//XMetaL//Book v1.0//EN">

If you want the DTD or rules file to be identified by the public identifier only, you should include an entry similar
to the following in the external identifier map file:

"-//XMetaL//Book v1.0//EN" ! book.dtd

This matches book.dtd to the public identifier, regardless of whether the system identifier is present, or
what it is.

Note: XML external identifiers must contain a system identifier.

Using an alternate DTD or rules location

If you store your DTD, schema, or rules file somewhere other than the Rules folder, you need to tell XMetaL
the location.

You can put the rules file location in the document type declaration explicitly:

<DOCTYPE BOOK SYSTEM "C:\DTDs\book.dtd">

Alternatively, you can use the external identifier map file, extid.map, to point to the location of the DTD or
rules file.

"-//Justsystems//Book v1.0//EN" ! "C:/DTDs/book.dtd" ! "book.dtd" "C:/DTDs/book.dtd"

The first example maps a public identifier to a DTD; the second maps a system identifier to a DTD.You can
use either form.

Mapping one system identifier to another

If the system identifier specifies dtdname.dtd, XMetaL looks, by default, for the rules file dtdname.rlx or
dtdname.rls. If the system identifier does not correspond to the desired DTD or rules file in this way, you
must create an entry in the external identifier map file.

The system identifier in the document type declaration may specify a DTD name, as in this example:

<DOCTYPE BOOK SYSTEM "book.dtd">

Customization Guide46

Creating an external identifier map file

For example, if you want to use the rules file realbook.rlx, instead of book.rlx, you can either change
the document type declaration to refer to the rules file or create an entry in the external identifier map file that
tells XMetaL which rules file corresponds to the DTD name.

Note: If the document type declaration contains a reference to a rules file (instead of a DTD), the
document type declaration no longer conforms to the XML specification.

To map a public identifier to a file name, use an entry like this example:

! "book.dtd" "realbook.rlx"

If you use several rules files, and there is a regular correspondence between DTD names and rules file names
(other than the default correspondence between .dtd and .rlx or .rls files), you can map them all using
one entry.

For example, if you use names of the form anything.dtd for all your DTD file names, and call the
corresponding rules files anything.rules, the following line in the external identifier map tells XMetaL to
use the rules file that corresponds to the DTD (regardless of whether the public identifier is present, or what
it is):

 ! (.*)\.dtd \1.rules

Language support
XMetaL supports multi-language documents that you can spell-check in a desired language.You can specify
a language in the xml:lang attribute for elements in the DTD. By default, the value of the xml:lang attribute
for an element is inherited from its parent.

For information on specifying languages in XML, see the W3C website.

Example

Suppose <TopLevel> is the top-level element. If the default language is American English,
the attribute list needs to include the following:

<!ATTLIST TopLevel
xml:langNMTOKEN"en-us"
>

To allow an element to override the default language, add the following attribute:

<!ATTLIST Para
xml:langNMTOKEN#IMPLIED
>

SGML declaration
An SGML declaration contains information about the character set, markup delimiters, quantity settings, and
special markup features.

If your DTD exceeds the defaults for such quantities as the length of an element or attribute name, or you
want to turn on an optional feature such as tag minimization, you must specify the desired values and features
in your SGML declaration. There is no need to use an SGML declaration with DTDs for XML files.

47© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Language support

http://www.w3c.org

You can provide an SGML declaration in the following ways:

• If there is a file dtdname.dec or dtdname.dcl in the same folder as the DTD dtdname.dtd, it is used
as the SGML declaration for all files that use that DTD

• You can specify an SGML declaration when you compile a rules file

In XML files, XMetaL writes element, attribute, and entity names in the case that matches their declarations
(upper, lower, or mixed).

In SGML files, element and attribute names are written in uppercase if the NAMECASE, GENERAL parameter
is set to YES (the default). If it is set to NO, elements and attributes are written in the case they were declared
in. Entity names are written in the case they were declared in if the NAMECASE, ENTITY parameter is set
to NO (the default). If it is set to YES, they are written in uppercase.

For more information on SGML declarations, see the Cover Pages website.

Sample SGML declaration

<!SGML "ISO 8879:1986"
-- Copyright Justsystems, 2006 --
CHARSET
BASESET "ISO 646-1983//CHARSET International Reference
Version (IRV) //ESC 2/5 4/0"
DESCSET
09UNUSED
929
11 2UNUSED
13 113
14 18 UNUSED
32 95 32
1271UNUSED
BASESET "ISO Registration Number 109//CHARSET
ECMA-94 Right Part of Latin Alphabet Nr. 3//ESC 2/13 4/3"
DESCSET
12832 UNUSED
160532
16589 32
2541127
2551UNUSED
CAPACITY PUBLIC
"ISO 8879-1986//CAPACITY Reference//EN"
SCOPE DOCUMENT
SYNTAX
SHUNCHAR NONE
BASESET"ISO 646-1983//CHARSET International Reference
Version (IRV) //ESC 2/5 4/0"
DESCSET
01280
FUNCTION
RE10
RS13
SPACE 32
NAMING
LCNMSTRT ""
UCNMSTRT ""
LCNMCHAR "-._"
UCNMCHAR "-._"
NAMECASE
GENERALYES
ENTITYNO
DELIM
GENERALSGMLREF
SHORTREF SGMLREF
NAMESSGMLREF
QUANTITY SGMLREF

Customization Guide48

SGML declaration

http://xml.coverpages.org

NAMELEN64
LITLEN2048
FEATURES
MINIMIZE
DATATAGNO
OMITTAGNO
RANKNO
SHORTTAG YES
LINK
SIMPLENO
IMPLICIT NO
EXPLICIT NO
OTHER
CONCURNO
FORMALNO
APPINFONONE
>

Attribute description files
An attribute description file contains descriptions of attributes. These are displayed at the bottom of the
Attribute Inspector when you click an attribute name in XMetaL Author.

The attribute description file consists of entries of the form:

Element Attribute "Help String"

This example supplies a help string for the SECURITY attribute of PARA:

Para Security "Security level"

Attribute description files can be used with DTDs or compiled rules files. The attribute description file should
be in the same folder as the DTD (by default, the folder Rules) and it must have the same name as the DTD
and the extension .att.

49© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Attribute description files

Forms

Forms provide a way to control content and simplify the content creation process for users of your XMetaL
customization.You can create forms and integrate them in your customization using the XMetaL Forms
Toolkit (XFT). Through forms, you can exchange data with your own XML documents or with an external
database.

Using forms, you can control what information users enter into an XML document, thereby standardizing
information and reducing entry errors.You can also hide the details of XML markup from the user, making
the job of entering content easier.

The XMetaL Forms Toolkit is designed to work seamlessly with XMetaL. It provides the tools to create forms
that can be run from within XMetaL either as modal dialog boxes or embedded within a document. In addition,
you can create forms that are bound to XML content, such as elements and attributes, and apply business
logic via scripting.

You create forms within the Form Layout Editor, which is an integral part of XFT.Your forms contain controls,
which have certain properties and events assigned to them.When you create a form, you drag control objects
from the Object Bar onto the workspace and modify their properties through the Property Sheet. The set of
tools allows you to precisely position the objects.

Form filename extension

By default, forms are saved with the .xft extension. For easy access, save your forms in the
..\XMetaL\Forms folder.

Testing forms

You can test and de-bug your forms in the Form Layout Editor by clicking View > Execute Form.

Script events

You can define specialized behavior for objects using JScript and VBScript events. All objects have the
following events:

• OnInitialize

• OnTerminate

• OnClick

There are also a number of optional events that may be linked in:

• OnDblClick

• OnMouseDown

• OnMouseMove

• OnMouseUp

• OnDragOver (You must set "Effect = 1" to enable OnDragDrop.)

• OnDragDrop

• OnBlur

• OnFocus

50© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Interfaces

All form objects, including the form background and frame, have properties. For more information, see the
XMetaL Programmer’s Guide.

Content mapping model

You can use XFT-specific script events, properties, and methods to transfer data between an XML document
and a form. For more information, see the XMetaL Programmer’s Guide.

XMetaL Forms Toolkit
The XMetaL Forms Toolkit (XFT) includes an easy-to-use interface for creating and testing forms, a data
source control for binding data from a database to your XML document, and a wizard that lets you associate
a form with an object in your customization.

Form Layout Editor

The Forms Layout Editor is included in the XMetaL Forms Toolkit.You use this tool to create and edit forms
for your customization.You can use the interface provided to position controls and determine their behavior.

By default, the Form Layout Editor is installed at ..\XMetaL\Developer\bin\XFLayout.exe.

51© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

XMetaL Forms Toolkit

Object Bar

The Object Bar appears by default in the Forms Layout Editor interface. It contains all of the objects that you
can use on your form.You can add objects to your form by clicking and dragging.

Table 9: Object Bar

DescriptionControl

Static (non-editable) text

Line drawing tool

Freehand drawing tool

Connector

Rectangular border drawing tool

Elliptical arc drawing tool

Ellipse drawing tool

Multi-purpose frame to group objects (with heading text)

Bitmap

Highlight

Button with pre-defined action

Check box

Radio button set

Combination text box and pull-down list

List box with scroll bar

Edit control for all variables (text box)

Multi-line edit control for all variables (multi-line text box)

ActiveX control

Data Source control

Form design tips

You can create controls that dynamically resize or reposition themselves when a form is resized using the
FlexHorizontal and FlexVertical properties. For buttons, text, check boxes, and radio buttons, and
other controls that should not change size, specify a value of 1 (Shift). In order to allow the user to take
advantage of extra space created by a newly expanded form, specify a value of 2 (Expand) for controls such
as edit boxes and multi-edit boxes. For more information, see the XMetaL Programmer’s Guide.

Customization Guide52

XMetaL Forms Toolkit

Create a form
You create forms using the Form Layout Editor. The process includes choosing a scripting language, adding
objects, and specifying properties. After you have finished, you can associate the form with an object in your
customization using the XFT Form Wizard.

1. In the XMetaL Form Layout Editor, click File > New and choose a scripting language.

2. Click OK.

3. Add controls to your form by clicking and dragging objects from the Object Bar.

4. Edit the object properties as necessary in the Property Sheet.

53© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Create a form

5. Click Layout > Objects and set the tab order.

6. Click View > Script Editor.

7. Select the object in the left drop-down list and an event in the right drop-down list and type scripts as
necessary.

8. Click File > Save.

Binding a form to XML content
You can bind controls in your form to elements and attributes by specifying an XPath property.You can then
use the XFT Form Wizard to associate a form with an object in your customization.

XPath syntax is similar to filesystem syntax. In XPath, element nodes are indicated with a slash character
(‘/’). XMetaL supports a subset of XPath expressions.

Table 10: Supported XPath expressions

Refers toExpression

Anchor element.

Attribute of the anchor element./@attributename

Customization Guide54

Binding a form to XML content

Refers toExpression

Child element./childelementname

Attribute of child element./childelementname/@attributename

Example

Here, you will bind the control for the First Name edit box in a form to the FirstName
element. The Author element is the anchor element for the form.

Consider the following document structure:

The document specifies an Author element with child elements called FirstName,
Surname, and Address. .

To indicate that the First Name control is bound to the element FirstName, the XPath
expression ./FirstName is entered in the XPath property.

55© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Binding a form to XML content

Special considerations

If the underlying document contains any element nodes that do not exist in the base XML document, XFT
displays the form with the element and allows the content to be entered. However, your document is not
populated with the data.

For controls that have an XPath property defined, the underlying XML document requires that the element
resolved by the XPath property already be created before XFT sets that element’s content as node-type
NODE_TEXT. The sample form Author.xft demonstrates how to create elements before XFT transfers
the form control data to the XML document.

XFT supports only DOM node-type NODE_TEXT. If other DOM node-types are required, use the
OnXftPutFormToDoc script hook to create your data. If the DOM node resolved by an XPath property has
child nodes or other node-types in its content, XFT replaces that content with NODE_TEXT data from the
form control or XmlValue property. To create this functionality, use the Tag property. The Tag property can
be assigned to all object types, such as DOM nodes, text strings, and numbers.You can assign the Tag
property to a result and later retrieve the result from the macro that invoked the XFT dialog box. Any type of
data can be assigned to the Tag property and retrieved by script elsewhere, such as in an XMetaL macro.

External data
You can exchange data with an external data source through your form. The Data Source object must be
added to any form that uses external data sources.

You can add a Data Source object from the Object Bar.

This form control object is visible during design time, but invisible at run time.

External data can be connected to the following objects:

• Text boxes

• Edit boxes

Customization Guide56

External data

• List boxes

• Combo boxes

Note: In order to have a way to move to from row to row in the data source, your list must include at
least one drop down or list box.

Connect to an external data source
You can connect a Data Source object in your form to an external data source through the data source
selection wizard.You then set the Data Field and Data Source properties for the object.

1. Drag the Data Source object onto your form.

2. In the Data Source property sheet, click in the text area to the right of the Source property to start the data
source selection wizard.

3. In the Select DSN list, locate and click the data source.

4. Type the User ID and Password for the data source if these are required.

5. Click Next.
The data for the field you selected is displayed on this page of the wizard.

57© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Connect to an external data source

6. Click Finish.

7. Click the control for which you want to select a data source field.

8. Set the DataField and DataSource properties.

Associate a form with a customization object
You can associate a form with an object in your customization using the XFT Form Wizard.

1. In the Solution Explorer, select an object in your customization that you want to associate with a form.

2. In the Advanced Display Type property, select XFT Form.

3. Click Setup.

4. Type the path and name of the form.

5. Select an option to determine how XMetaL will run the form.

6. (Optional) If you chose to run the form as an Embedded form, select an option to determine how XMetaL
will display the form.

In most cases, you will want to select Replace Content; however, there may be times when you want to
preserve content that is related to the data entered on the form. In these cases, select Before Content or
After Content.

7. Select an option to indicate when XMetaL is to display the form.

Executing a form as a modal dialog in XMetaL
You can run a form as a modal dialog in XMetaL by using a macro.

Customization Guide58

Associate a form with a customization object

The macro shown here uses the Application.CreateFormDlg method to call the form myform.xft:

<MACRO name="RunForm" lang="JScript">
var dlg=Application.CreateFormDlg("C:\\myform.xft");
dlg.DoModal();
dlg=null;
</MACRO>

Sample forms
Sample forms are located in ..\XMetaL\Author\Forms .

Table 11: Sample forms

DescriptionName

This form is called by the Insert Annotation macro. It is an
interface for editors and reviewers to provide initialed

Annotation.xft

annotations to a document that is based on the Journalist
DTD. It contains no special scripts and is not bound to any
content.

This is an embedded form for the Journalist DTD. It is an
interface to enter or change author information in a

Author.xft

document. It contains object events script, and is bound to
XML content.

This form is called by the Insert Comment macro. It is an
interface for editors and reviewers to provide comments to

Comment.xft

a document that is based on the Journalist DTD. It contains
no special scripts and is not bound to any content.

This form is called by the ListAllComments macro. It is an
interface to view comments added to a document that is

LIstOfComments.xft

based on the Journalist DTD. It contains no special scripts
and is not bound to any content.

This form was set up as a modal dialog box. It is an interface
to enter or change the publication date of a document based

PubDate.xft

on the Journalist DTD. It contains object events script for
the OnXftPutXmlValue and OnXftGetXmlValue functions,
and is bound to content in the document.

This form is called by the Insert ULink macro. It is used to
create a URL link from text selected in a document based

ULink.xft

on the Journalist DTD. It contains no special scripts and is
not bound to any content.

This form is called by the XMLToPDF macro. It is used to
initialize and configure the PDF print engine. It contains no
special scripts and is not bound to any content.

XMLtoPDFSetup.xft

59© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Sample forms

Editor display styles

You can control how XML and SGML documents appear in XMetaL Author and XMetaL XMAX using cascading
style sheets (CSS). When you create a customization, two CSS files are created. Style rules from these files
is compiled in the XAC file when you build your customization.

Table 12: Default CSS files

DescriptionUseAs typeName

The default display stylesCSS styles file for Normal view{dtdname}.css

Overrides or adds to the default stylesCSS styles file for Structure view{dtdname}_structure.css

The default files contain selectors and style properties for each element in your DTD or schema.You can
modify the style rules in the CSS editor or in a text editor.You can also add existing CSS files to your
customization to use instead of the default files. However, if you choose to do this, you must specify the
UseAs type accordingly.

For details on using XSLT to transform documents for previewing, see the section on Formatting Object
methods in the XMetaL Programmer's Guide for details.

CSS specifications are available on the World Wide Web Consortium website at www.w3c.org.

CSS editor
You can edit CSS files through the CSS editor.

The cascading style sheet editor contains the following areas:

• Selectors area. Lets you create, delete, sort, and choose selectors.

• Style Rule area. Displays the style rule for the current selector and lets you edit it.

• Sample Text area. Formats the text according to the style rule.

• Properties area. Lets you create style rules.

60© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

http://www.w3c.org/

You can create a new selector by clicking Create new CSS selector or Create new CSS selector
with properties of selected Selector.

You can remove a selector by clicking Delete selector from the list

You can change the order of the selectors by clicking Move up or Move down.

Creating selectors
A selector is an expression with which you can associate a style property.You can create selectors through
the Selectors area of the CSS editor.

A selector can represent the following, or any combination thereof:

• Elements

• Attributes

• Pseudo-elements and pseudo-classes

• XMetaL-specific keywords

By default, selectors appear in the list according to the order in which they were created, with the XMetaL-
specific selectors first, followed by a list of the elements defined in the DTD or schema, and finally by any
selectors that you create. However, you can change this order when you create or edit selectors by clicking
the up and down arrows.

61© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Creating selectors

Selector syntax

For a description of selector syntax, see the CSS specifications on the World Wide Web Consortium website
at www.w3c.org.

Simple selectors

The following example causes all Title elements to appear in blue:

TITLE {color:blue;}

Pseudo selectors

The following rule causes all first-child elements of a section to appear in boldface:

SEC:first-child {font-weight:bold;}

Child selectors

The following rule applies to all title elements that have book as a parent:

BOOK>TITLE {color:blue;}

Attribute selectors

The following rule causes all emphasis elements with the role bold to appear in blue:

EM[role="bold"] {color:blue;}

Sibling selectors

The following rule specifies the color blue for all paragraph elements:

P {color:blue;}

The following rule, causes all paragraphs immediately preceded by a paragraph to appear
in red:

P+P {color:red;}

The result of these rules would be that the first paragraph appears in blue and all
subsequent paragraphs appear red.

Class selectors

The following rule causes all titles with the class news to appear in red:

TITLE.news {color:red;}

Descendant selectors

The following rule causes all titles that are child elements of a book to appear in blue:

BOOK TITLE {color: blue;}

Customization Guide62

Creating selectors

http://www.w3c.org/

XMetaL-specific selectors
In a new CSS file, XMetaL Developer automatically populates the list with XMetaL-specific selectors, which
let you take advantage of specific XMetaL functionality. In the list of available selectors, these appear first
unless you change the order.

Table 13: XMetaL-specific selectors

DescriptionName

Applies styles to an entire document. All other selectors
inherit the styles set for this selector unless different styles
are set specifically for subordinate selectors.

$DOCUMENT

Applies styles to any marked sections in SGML documents
or CDATA sections in XML documents.

$MARKSEC

Applies styles to comments within an XML or SMGL
document.

$COMMENT

Applies styles to processing instructions within an XML or
SGML document.

$PROCINS

Note: Visual Studio .NET returns an unexpected character sequence error for each of the proprietary
XMetaL-specific keywords. Also, if you build your project with the View Code window open, errors these
keywords are listed in the task list but the file is copied into the build.

Styling processing instructions

You can style processig instructions using the $PROCINS keyword and the following qualifier names:

xm-pi-target

xm-pi-data

xm-pi-target

Normal CSS cascading rules apply.

Examples

The following rule hides all occurances of any PI with a target called ‘print’:

$procins[xm-pi-target="print"] {display:none}

The following rule hides all occurances of ?print page-break?:

$procins[xm-pi-target="print"][xm-pi-data="page-break"] {display:none}

The following rule colors all PIs with a data value of ‘index-start’ using blue text:

$procins[xm-pi-data="index-start"] {color:#0000ff}

The following rule styles all replacement text PIs in green:

$PROCINS[xm-pi-target="xm-replace_text"] {color: green;}

Create a selector
You can create a blank selector or copy style rules from an existing selector.

63© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

XMetaL-specific selectors

1. Open a CSS file through the Solution Explorer.

2. Do one of the following:

• Click Create new CSS selector.

• In the Selectors list, click the name of the selector whose style rules you want to copy. Click Create
new CSS selector with properties of selected Selector.

3. Choose a type of selector.

4. From the Select Element list, select the name of the element to use as the selector and click >.

5. If you want to create a single style rule to apply to all selectors in the Selectors to be created list, click the
Add as a grouped selector option.

Note: New selectors must have style rules associated with them before the cascading style sheet
editor is closed or they will not be saved in the Selectors list.

Custom selectors
The Custom option in the CSS editor lets you type a custom selector. Style rules that you create with custom
selectors may not be visible in XMetaL Author or XMetaL XMAX.

Some possible uses for custom selectors include the following:

• To specify a namespace so that similarly-named elements from different DTDs or schemas can have
different formatting information

• To add an ‘@import’ statement to import rules from another style sheet into the current style sheet

Note: Styles in an imported style sheet have lower precedence than styles in the current style sheet.

Namespace-aware selector

The following rule causes all emphasis elements in namespace my_ns to be styled in
boldface:

my_ns|em {font-weight: bold;}

@import statement

The following statement imports the rules from the CSS file mystyles.css:

@import url("mystyles.css")

Setting style properties
You can edit the properties of your style rules through the CSS editor. The Properties area lets you select
options to set properties, or you can type properties directly in the Style Rule area. By default, many properties
inherit their value from parent and ancestor elements.

The Properties Area of the CSS editor contains four tabs that show the properties that can be displayed in
XMetaL.You can set these properties by clicking the tab and moving to the appropriate section.

Customization Guide64

Custom selectors

Table 14: Properties

To edit:Click this tab:

Fonts, text alignment, and indentText

Margin, padding, and bordersEdges

Miscellaneous properties, including classification,
whitespace, and counters

Other

XMetaL-specific properties, including indent, prefix, and
view settings

Extensions

You can also add other properties by editing the text in the Style Rule area. However, these properties may
not be visible in XMetaL.

For descriptions of CSS properties see the World Wide Web Consortium website at www.w3c.org.

Extensions properties
The Extensions tab in the CSS editor contains XMetaL-specific properties. The properties on this tab are not
part of the CSS specifications, and can be viewed only in XMetaL.

Left indent

Use this property to display the element(s) indicated at a set distance from the left margin, regardless of the
position of any ancestor element.

Prefix options

Use this property to displays prefix text, the attributes of an element, or the parameters and parameter entities
of a marked section (in Tags On view only).You can set the following prefix options:

• To set a rule to display prefix text, type the desired text

• To set a rule to display all attributes with non-null values for the element(s) to which the style applies, type
[%attribute-list;]

• To set a rule to display the value of a specific attribute for the element(s) to which the style applies, type
[%attribute ATTRIBNAME;], where ATTRIBNAME is the name of the attribute whose value you want
to display

• If you are creating a display rule for marked sections, you can choose to display marked-section parameters
and parameter entities by typing [%parameters;]

Structure view options

Use these properties to control the behavior of the Structure View.You can set the following options:

• Show +/- to display the expand and collapse icons

• Show icons to display page and book icons

• Show start tags to display a start tag at the beginning of each element

View support for properties and selectors
The tables below indicate XMetaL Developer and XMetaL Author display support for CSS properties and
selectors.

65© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Extensions properties

http://www.w3c.org/

Table 15: Assigning property values, cascading, inheritance

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Name

XXX‘@import’ rule

XX-‘inherit’ value

Table 16: Font properties

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Name

XXXfont

XXXfont-family

XXXfont-style

XXXfont-variant

XXXfont-weight

XXXfont-size

Table 17: Color and background properties

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Name

XXXbackground

---background-attachment

XXXbackground-color

---background-image

---background-position

---background-repeat

Table 18:Text properties

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Name

XXXcolor

XXXtext-indent

-XXtext-align

X (except double-overline
and double-underline)

X (except double-overline
and double-underline)

X (except double-overline
and double-underline)

text-decoration

---letter-spacing

---word-spacing

---text-transform

sub and super onlysub and super only-vertical-align

---line-height

Customization Guide66

View support for properties and selectors

Table 19: Box properties

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Name

XXXborder, border-top, border-
right, border-bottom,
border-left

X (only when set to the same
value for all sides)

X (only when set to the same
value for all sides)

Xborder-color

X (only when set to the same
value for all sides)

X (only when set to the same
value for all sides)

Xborder-top-color, border-
right-color, border-bottom-
color, border-left-color

XXXborder-style

XXXborder-top-style, border-
right-style, border-bottom-
style, border-left-style

X (only when border-xxx-
width are set to the same

value)

X (only when border-xxx-
width are set to the same

value)

Xborder-width

X (only when set to the same
value)

X (only when set to the same
value)

Xborder-top-width, border-
right-width, border-bottom-
width, border-left-width

---clear

-XXfloat

---height

---width

-XXmargin

-XXmargin-top, margin-right,
margin-bottom, margin-left

-XXpadding

-XXpadding-top, padding-right,
padding-bottom, padding-left

Table 20: Classification properties

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Name

-XX (for ‘nowrap’ only)white-space

-X-display

-X-list-style

-X-list-style-type

---list-style-position

---list-style-image

67© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

View support for properties and selectors

Table 21: Generated content, auto-numbering, and list properties

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Name

XX-content: <string>

---content: <uri>

XXXcontent: <counter>

XXXcontent: attr(X)

XXXcounter-increment

XXXcounter-reset

Table 22: Positioning properties

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Name

---position

---top

---right

---bottom

---left

---width

---height

---clip

---overflow

---z-index

---visibility

Table 23: Other properties

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Name

---@media

-XXdirection

-XXunicode-bidi

---min-width

---max-width

---@page

---page-break-before, page-
break-after

---page-break-inside

---orphans

---widows

---border-collapse

Customization Guide68

View support for properties and selectors

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Name

---border-spacing

---caption-side

---table-layout

---empty-cells

---cursor

---outline

---outline-width

---outline-style

---outline-color

Table 24: Selectors

XMetaL Author Structure
View

XMetaL Author Normal
View

XMetaL Developer CSS
Editor Preview

Type

XXXGrouping

XXXUniversal Selectors

XXXType Selectors

XXXDescendant Selectors

XXXChild Selectors

XXXAdjacent Sibling Selectors

XXXAttribute Selectors

XXXClass Selectors

---ID Selectors

:first-child only:first-child only:first-child onlyPseudo-Classes

:before and :after only:before and :after only:before and :after onlyPseudo-Elements

Using counters and autonumbering
A counter is an element prefix that is incremented for each successive occurrence of that element.You can
create counters in your document using pseudo-selectors and counter properties.

You can add simple or multi-level counters to elements in your document. For example, chapters in a document
may be numbered 1, 2, 3, etc. and subsections of a chapter may be numbered 1.1, 1.2, ... , 2.1, 2.2, ..., etc.
A counter can be initialized to start at a specified value and various numbering styles are available.

Counters are displayed in :before and :after generated text by using the counter and counters
functions. They are configured using the counter-increment and counter-reset properties.

69© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Using counters and autonumbering

Simple counter

The following rule associates a counter with the Sect1 element and gives this counter
the name ‘section1’, so that it can be referred to elsewhere in the style sheet.

Sect1 {
counter-increment: section1;
}

Displaying a counter

The following rule displays the counter at the start of the Sect1 element, but it is more
common to display the counter before an element’s title (if there is one):

This rule displays the counter at the start of the Sect1 element, but it is more common to
display the counter before an element's title (if there is one):

Sect1>Title:before {
content: counter(section1);
}

You can include text before or after the counter. For example, the following rule displays
1. , 2. , ... before the titles:

Sect1>Title:before {
content: counter(section1) ". ";
}

Resetting the numbering

The following rules reset the number for each new list:

ItemizedList {
counter-reset: li;
}
ListItem {
counter-increment: li;
}
ListItem:before {
content: counter(li) ". ";
}

Initializing counters

The following rule resets the counter to 5:

Sect1 {
counter-increment: section1;
counter-reset: section2 5;
}

Customization Guide70

Using counters and autonumbering

Multi-level counters

The following rules define two counters, section1 and section2. The counter-reset
property in the Sect1 rule means reset the counter called section2 to zero whenever a
Sect1 element is encountered.

Sect1 {
counter-increment: section1;
counter-reset: section2;
}
Sect1>Title:before {
content: counter(section1) ". ";
}
Sect2 {
counter-increment: section2;
}
Sect2>Title:before {
content: counter(section1) "." counter(section2) ". ";
}

Numbering styles

The following rules specify upper-alpha and lower-roman style counters:

Sect1>Title:before {
content: counter(section1,upper-alpha) ". ";
}
Sect2>Title:before {
content: counter(section1,upper-alpha) "."
counter(section2,lower-roman) ". ";
}

Formatting elements as tables
Using CSS, you can format other groups of elements as tables, provided they have a tabular structure.These
elements are sometimes referred to as semantic tables.

A tabular structure must have these components:

• An enclosing element, which can be formatted as a table

• A child of the table element, which can be formatted as a table row

• A child of the table row element, which can be formatted as a table cell

Example

The VariableList element in the sample journalist DTD can be formatted as a table.
This element has the following structure:

<VariableList>
<VarListEntry>
<Term>...</Term>
<ListItem>...</ListItem>
</VarListEntry>
<VarListEntry>
...
</VarListEntry>
...
</VariableList>

71© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Formatting elements as tables

Through the CSS display property (in the Other tab), you can format VariableList as
a table, VarListEntry as a table row, and Term and ListItem as table cells. The
following rules are used to format VariableList as a table:

VariableList {
display: table;
}
VarListEntry {
display: table-row;
}
VarListEntry>Term {
display: table-cell;
}
VarListEntry>ListItem {
display: table-cell;
}

(In this case we specify styles for Term and ListItem when they occur as sub-elements
of VarListEntry, since the DTD allows these elements to occur in other contexts.)

Elements styled using this method will appear as tables but they will not support standard
table editing functions such as those provided through the Table Properties dialog. This
type of functionality requires scripting via macros.

Example style rules

The following sample style sheet contains style rules that were created with the CSS editor:

DOCTITLE { font-size: 20pt; line-height: 22pt; color: green }
.student { display: none }
#para1 { font-style: italic; font-weight: bold }
TITLE3, TITLE4 { font-size: 14pt; line-height: 16pt }
QUOTE P { text-indent: 0.5in }
LI.student { display: none }
SEC{prefix-format: "[%attribute NAME;]";}

The first rule states that all DOCTITLE elements have a font size of 20 points, line height of 22 points, and
are displayed in green.

The second rule states that all elements in the class student (that is, all elements, of any type, whose CLASS
attribute has the value ‘student’) are hidden.

The third rule states that the element with ID value para1 appears in a bold, italic font.

The fourth rule states that both TITLE3 and TITLE4 elements have a font size of 14 points and a line height
of 16 points.

The fifth rule states that a P element that is contained in a QUOTE element is indented by 0.5 inches.

The sixth rule states that an LI element in the class "student" (that is, its CLASS attribute has the value
‘student’) are hidden.

The seventh rule states that, for all SEC elements, the value of the NAME attribute is displayed before the
element content.

Customization Guide72

Example style rules

Resource Manager

In XMetaL Author, the Resource Manager lets you view and organize resources so that you can easily use
them in your documents. By default, the Resource Manager contains the Assets tab (Asset Manager) and
the Desktop tab.You can configure the Resource Manager using the ResourceManager interface and
through configuration files and scripts.

Assets tab (unsupported)

The Asset Manager gives you access to objects such as images and text files. In addition to adding assets
to existing asset types, you can define new types and write scripts that define how files are added to them
and the behavior that occurs when an asset is dropped into a document. For more information about adding
assets, see the XMetaL User’s Guide.

Note: The Assets tab is unsupported and may be removed in a future release.

Desktop tab

The upper pane of the Desktop tab displays a Windows Explorer-type view of the files and folders on your
system. The lower pane shows folder contents.You can drag and drop files from the lower pane into your
document.

The Desktop tab supports Windows shell namespace extensions.

When customizing the Desktop tab using scripts, you need to be aware of the following limitations:

• You cannot grab the control with a script

• IDispatch is not supported by any of the Microsoft interfaces used by the Desktop tab

• Replacing it with a new tab (using the AddTab method) and creating a new instance of Windows Explorer
does not create a single instance (opening a folder creates a new instance of Explorer)

Custom tabs

You can use script to add custom tabs (for example, that contain ActiveX controls) to the Resource Manager
using the ResourceManager APIs.

Configuring the Asset Manager
You can change the way assets are displayed in the Asset Manager and the behavior that occurs when they
are dropped into a document.

The tools consist of:

• Configuration files.

• Properties and methods as described in the XMetaL Programmer’s Guide. For example, you can invoke a
dialog when users drop an asset into the Asset Manager or into a document.

• Script variables.These strings correspond to files, element contents, and attribute values used by the Asset
Manager. They are resolved by the Asset Manager before scripts are executed. Most of them apply to the
Item element for the asset currently being dragged.

73© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

In order to configure the Asset Manager, you need a working knowledge of a scripting language (JScript,
JavaScript, or VBScript), XML, and HTML. Familiarity with the HTML Document Object Model (DOM) as
implemented by Internet Explorer is also helpful.

Table 25: Configuration files

DescriptionName

Asset catalog file.This file contains an entry (Item element)
for each asset. It can also include templates that define the

fxitems.xml

structure of each entry, and scripts that define the action
that is to take place when an asset is dropped into a
document.

Asset display file. This file determines the contents of the
lower pane of the Assets tab when the user opens a folder,

fxindex.htm

including text and images. Each folder in the Asset Manager
must contain an asset display file.

Master asset catalog file, by default ..\Program
Files\XMetaL\Author\Assets\fxmaster.xml.

fxmaster.xml

If an asset catalog file does not contain the template and
script that determine how an asset is represented and how
it is dropped into a document, the Resource Manager looks
here for this information.

An empty text file. When this file exists in an asset folder,
scroll bars are not displayed in the lower pane of the Asset
Manager.

noscrollbars.txt

Table 26: Methods and properties

DescriptionName

User interaction methods.Application.Alert, Application.Confirm

The path to the assets.Application.AssetsPath

Copies a file from any location (including one specified by
a URL) into an asset folder or other folder.

Application.CopyAssetFile

Returns a Range object corresponding to the point at which
the user drops the script into the document.

Application.DropPoint

Collapses the selection to an insertion point at its start- or
end-point.

Selection.Collapse

Sets or returns the value of a specified attribute of the
selection’s container.

Selection.ContainerAttribute

Sets or returns the name of the current container (element,
processing instruction, section, or comment).

Selection.ContainerName

Enables you to read an external text file (plain text or
tagged) and assign its contents to a variable. It can then be
manipulated or pasted.

Application.FileToString

InsertElement inserts the specified element.
CanInsert can be used to check if the insertion would
be valid.

Selection.InsertElement,
Selection.CanInsert

Inserts an image using an element defined as an image
element.

Selection.InsertImage

Move to the next instance of a specified element.Selection.MoveToElement

Customization Guide74

Configuring the Asset Manager

DescriptionName

PasteString does a basic paste of a string into the
current document. CanPaste can be used to check if the
intended paste is valid.

Selection.PasteString, Selection.CanPaste

Selects the contents of the current container.Selection.SelectContainerContents

Table 27: Script variables

DescriptionName

The path part of the current page’s URL; that is, everything
up to the rightmost forward slash.

%Pathname%

The value of the SRC attribute of the Filename child
element of the Item element of the asset being dragged.
In other words, the asset filename.

%Filename%

The content of the TextData child element of the Item
element of the asset being dragged.

%TextData%

The value of the attribute attribute of the child element
element of the Item element corresponding to the asset
being dragged.

%thisItem.SQ_getChildAttribute(element,index,attribute)%

The contents of the subelement element of the Item
element corresponding to the asset being dragged.

%thisItem.SQ_getChildInnerHtml(element,index)%

The value of the attribute attribute of the element in
fxitems.xml that has the ID attribute equal to id.

%htmlItem.SQ_getAttribute(id,index,attribute)%

Creating asset types
New asset types are defined in asset templates, which consist of an asset display file and an asset catalog
file. When you define a new asset type, you enable users to create assets of this type.

To add an asset type, you create a folder in ..\Program Files\XMetaL\Author\Asset Templates.
When a user creates a new asset folder and specifies the new asset type for that folder, the files in the
template folder are copied to the new asset folder. The scripts in the asset catalog file define the following:

• The action to take when users drag files into the asset folder. This can include prompts and dialogs. The
script adds an Item element for the new asset into the catalog.

• The action to take when a user drags a file from the asset folder into a document.

As you are developing and testing asset catalog and asset display files, you can refresh the view in the Asset
Manager through the right-click menu.

Sample asset catalog and asset display files files are located in ..\Program
Files\XMetaL\Author\Samples\Asset Templates.

Asset display file
Every asset folder contains a display file that reads the entries contained in the catalog file and displays them
in the lower pane of the Asset Manager. Users can easily drag and drop assets from the lower pane into a
document.

75© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Creating asset types

Sample asset display files are located at ..\Program Files\XMetaL\Author\Samples\Asset
Templates. The sample display files have the following characteristics:

• An OBJECT element that refers to an ActiveX control that reads an asset catalog file and creates a data
structure.

• A JScript that uses this control to read the asset catalog file and create a data structure.

• A script that traverses the data structure and obtains information about an asset from the corresponding
Item element. This information can be customized, but it usually consists of an asset filename, an icon
filename, a description, and a unique identifier. This information is displayed in the lower pane.

Note: Because the asset display file is processed by a browser component, you must use a standard
scripting language such as JScript.

To give users information about the asset type, you may want to include text and graphics. If a folder does
not contain any assets, you still need to create an asset display file in it. These can include text or graphics
that explain what kind of assets are in the sub-folders of the current folder. For assets that may be difficult
for some users to understand, you can include a short documentation section or links to other documents.

Asset catalog file
The asset catalog file provides a template for the structure of the catalog entries (Item elements) and scripts
that define the behavior that occurs when a user adds an asset to a folder or drags it into a document.

Sample asset catalog files are located in ..\Program Files\XMetaL\Author\Samples\Asset
Templates. In addition to the required elements, your template can contain any other elements.The templates
in the sample files also contain Description and SCRIPT.

Here is a sample template:

<Item Type="File" Class="Fig" ID="%Filename%" FILEFILTER="*.jpg;*.gif;*.png">
 <Icon SRC="%Filename%"/>
 <Description>%ASK:Description:%{Description}<Description>
 <Filename SRC="%Filename%"/>
 <SCRIPT Language="JScript">
 ...
 <SCRIPT>
<Item>

Table 28: Required template elements

DescriptionName

The root element. The Type attribute can have the value
‘Text’ or ‘File’.The Class attribute identifies the asset type.

Item

ID must be a unique identifier within the set of assets in a
particular folder. The FILEFILTER attribute is used if an
assets folder is created from Windows Explorer instead of
through the Asset manager. When this folder is selected in
the Asset tab, you see a Convert to Assets page. The file
extensions specified determine which types of files are
added to the assets when you do the conversion.

The icon used to represent the asset in the lower pane of
the Asset tab.The SRC attribute specifies the icon file.This

Icon

file must be in a format that can be displayed by a Web
browser. If you do not want to use the actual asset filename,
you can create a dialog for the user to enter a filename.

The asset filename. The SRC attribute specifies the file.Filename

Customization Guide76

Asset catalog file

Description

Description can be used to generate a text box prompt in the Asset Details dialog box that appears when
the user adds an asset to the folder. A string of the form %ASK:String1:%String2 is interpreted as follows:

• %ASK causes a text box to be displayed.

• String1 is for the text box label. This should be a short string without spaces.

• String2 specifies the default content of the text box.

When the Item element is written to the asset catalog file, the user’s response is substituted for the %ASK
string. %ASK can also be used to prompt the user for an attribute value.

SCRIPT

The SCRIPT element contains code that inserts the asset into the document when a user drags it from the
Asset tab. If the asset has the type ‘File’, the script also copies the asset file from the asset folder to a location
relative to the document in which it is being inserted.

This script carries out the following steps:

1. Get the full path to the asset file.
2. Create the attribute value that specifies the filename.
3. Define a function, buildpath, that calculates the location where the asset file is to be copied.
4. Define a function, dropfxnow, that copies the file and performs the insertion.
5. Check whether the document has ever been saved. If it has, call buildpath and dropfxnow. If it has

not, prompt the user to save the document.
6. Check a second time whether the document has been saved. If it has, call buildpath and dropfxnow.

The sample template can be used to write the following Item element:

<Item Type="File" Class="Fig" ID="scully06.jpg" FILEFILTER="*.jpg;*.gif;*.png">
 <Icon SRC="scully06.jpg"/>
 <Description>Scully saves Mulder again!<Description>
 <Filename SRC="scully06.jpg"/>
<Item>

Text file and text block assets
Assets can also consist of text files or blocks of text. The contents of the text file or the TextData element
are inserted into the document when a user drags and drops the asset from the Asset Manager.

For these types of assets, you must either specify an icon in the Item template, or prompt the user to enter
the name of an image file when the asset is created.

The contents of text block assets are stored in the asset catalog file itself, rather than in another file. Text
block assets have the following characteristics:

• The Type attribute must have the value ‘Text’.

• Instead of a Filename element, the Item template has a TextData element that contains character data.
The script that drops the asset into a document must obtain the contents of the TextData element.

Master asset catalog file
If the catalog file in an asset folder does not contain the template and script that determine how an asset is
represented and how it is dropped into a document, the Resource Manager looks in the master asset catalog
file for this information.

77© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Text file and text block assets

Storing templates and scripts in a central location is a convenient way of managing your assets. If you choose
this approach, you need to create a shell asset catalog file containing the following elements in the asset
folder:

<?xml version="1.0" standalone="yes"?>
<Items><Items>

If the template and script for an asset type are contained in the master catalog file, then the user is prompted
to choose the asset type from among all the available asset types when a new asset is created. If the catalog
file in the asset folder contains the template and script, the asset type is assumed to be the one specified by
the template.

Remote assets
You can store asset folders on a Web server or Intranet, but you cannot add new assets to remote folders.

Remote asset catalog files specify URLs to the asset catalog files in each asset folder. Here is an example:

<?xml version="1.0" standalone="yes"?>
<FOLDERS MODIFIED="19990511.1">
 <FOLDER NAME="Buttons" URL="http://www.mysite.com/xmassets/buttons/fxindex.htm"/>
 <FOLDER NAME="BigButtons"
URL="http://www.mysite.com/xmassets/buttons/bbuttons/fxindex.htm"/>
 <FOLDER NAME="LittleButtons"
URL="http://www.mysite.com/xmassets/buttons/lbuttons/fxindex.htm"/>
 ...
</FOLDERS>

Remote asset catalog files have the following characteristics:

• FOLDER elements indicate folders.You can create a nested folder structure.

• The MODIFIED attribute indicates the last revision of the asset folder structure, in YYYYMMDD.R format,
where R is a revision number.You must update this value whenever the structure of the file changes. If the
MODIFIED value changes in the top-level remote asset catalog file, the local structure is updated the next
time the user accesses remote assets.

• The NAME is the folder name, the URL is the full path to the folder’s asset display file.

When you access remote assets, a folder structure is built underneath the folder that you designate as the
remote folder on your local system. Its structure parallels that of the assets on the server, but the only content
in each local folder is an Internet shortcut file that points to the remote server. Internet shortcut files have the
extension ‘.url’. Here is an example:

[InternetShortcut]
URL=http://www.mysite.com/xmassets/fxindex.htm

The value of URL must be the location of the asset display file in the remote assets folder on the server.

Set up a remote assets folder
You first create assets on your local system and then move them to a remote location on a server.

1. Create a folder for local assets in ..\Program Files\XMetaL\Author\Assets.

Give the folder an easily identifiable name, such as ‘Local’.

2. In the Local folder, create an asset catalog file that contains entries (Item elements) for each asset.

3. Create a folder for remote assets in ..\Program Files\XMetaL\Author\Assets.

Customization Guide78

Remote assets

Give the folder an easily identifiable name, such as ‘Remote’.

4. In the Remote folder, use a text editor to create an Internet shortcut file, and save the file as assets.url.

5. Move the asset folders from their local location to the server location.

6. In the Remote folder, create an asset catalog file.

79© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Set up a remote assets folder

Configuring XMetaL

Each installation of XMetaL Author contains a global configuration file and a user configuration file.You can
configure XMetaL Author behavior for your customization through the global configuration file.

Configuration files contain one or more variables that are read when you start XMetaL. Each variable is a
name-value pair. The values can be booleans, pathnames, numbers, and strings. Changes to configuration
files are effective when you re-start XMetaL.

Table 29: XMetaL configuration files

DescriptionName

Global configuration file. Contains default factory settings
and settings made for deployment within a customization.

..\Program Files (x86)\XMetaL12.0\Author\xmetal.ini

This file should not be modified after XMetaL Author has
been installed, except by the installer in Modify or Repair
mode. This file is reset to its factory settings if XMetaL
Author is updated or re-installed.

User configuration file. Contains user-specified settings and
settings made through the XMetaL interface, such as

..\Users\{username}
\AppData\Roaming\SoftQuad\XMetaL\12.0\XMetaL.ini

Options. These settings take precedence over global
settings.

If your customization of XMetaL uses the XMetaL Application Customization (XAC) set, these files can be
stored on a web server, a network server, or any user-accessible folder on the local system.

Adding new toolbar icons
You can add icons to the list of those already provided for creating custom toolbar buttons.

The images must conform to the following specifications:

• Standard Windows 16 color palette

• Width 18 pixels, height 16 pixels

• BMP format

The files containing the images must be BMP files containing a row of up to 10 images in the format described
above. Each icon set can have up to eight rows.The files must be named row1.bmp, row2.bmp, ...row8.bmp.
The files for a single icon set must be in their own sub-folder of the Icons folder.

In order to tell XMetaL Author to use a custom icon set, you must edit the Icons\icons.ini file. For
example, if you have two custom icon sets in the folders Icons\Flags and Icons\Tools, you need to add
two entries to the icons.ini file, as follows:

[icon groups]
1=Flags
2=Tools

If you change the number associated with an icon group after some of its members have been assigned to
toolbar buttons, those buttons may then have a different icon, or no icon. In this situation, you must re-assign
images to the buttons.

80© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Frequently used configuration variables
The following is a list of frequently used configuration variables.

Table 30: Frequently used configuration variables

Change this variable:To do this:

enable_edit_as_wellformedDisable well-formed editing

make_log_fileCreate a log file

validate_before_exportDisable default validation on save

expand_entities_in_tags_on_viewDisplay entity replacement text in Tags On view

rules_checking_always_off_option_shownTurn off rules checking option

rules_checking_always_offTurn off rules checking

default_macro_languageSet macro scripting language

macro_pathSet macro folder location

enable_toolbar_customizationAllow modification of toolbars and menus

default_structure_view_widthSet the default width of the Structure View

assets_pathChange top-level folder in Assets tab

tbr_pathSet toolbar filepath

backup_extChange backup extension

default_font_nameChange default plain-text font

entity_extChange recognized entity extension

make_log_fileMake a log file during debug

log_fileSet the name of the log file

rules_checking_always_offTurn off validation

user_nameSet user name

Configuration variables
The following variables are recognized by XMetaL Author at startup.

Table 31: INI Variables

DescriptionDefault valueVariable name

File contents to be displayed in the
About box.

${SQDIR}/XMetaL.rtfabout_rtf_file

-insert_directlyaction_on_space_typed_in_
element_content

Clears the undo stack whenever a
document is saved.

YESalways_undo_clear_after_save

-.classapplet_ext

-${SQDIR}\Assetsassets_path

81© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Frequently used configuration variables

DescriptionDefault valueVariable name

Instead of automatically saving the
document to the same file,

Falseauto_backup_instead_of_auto_save

automatically create a backup file (with
the extension specified in the
backup_ext INI variable). When this
value is True, XMetaL creates a backup
file without performing validation.

-.bakbackup_ext

-NOCALS_table_auto_layout

-NOcolor_entity_refs_in_text

-16colormap_segment_size

Initial size of context area.120context_area_width

Path of .ctm (customization) files.

Defaults to rules_path, which
defaults to "${SQDIR}\Rules" where

${SQDIR}\Rulesctm_path

${SQDIR} is the software's install
folder path.

-${SQDIR}/Cursors/Cursor0.curcursor_file0

-${SQDIR}/Cursors/Cursor1.curcursor_file1

-${SQDIR}/Cursors/Cursor2.curcursor_file2

-${SQDIR}/Cursors/Cursor3.curcursor_file3

-${SQDIR}/Cursors/Cursor4.curcursor_file4

-${SQDIR}/Cursors/Cursor5.curcursor_file5

-${SQDIR}/Cursors/Cursor6.curcursor_file6

-${SQDIR}/Cursors/Cursor7.curcursor_file7

-${SQDIR}/Cursors/Cursor8.curcursor_file8

-${SQDIR}/Cursors/Cursor9.curcursor_file9

Extension for macro files.mcrcustom_macro_ext

Macros to be loaded when XMetaL
starts.

${SQDIR}\Startupcustom_macro_path

Font used in Plain Text view.Courier Newdefault_font_name

Size of the font used in Plain Text view.12default_font_size

Determine default language when a
new macro is created.

VBScriptdefault_macro_language

Default Save As extension..xmldefault_save_as_ext

Default width of Structure View.-default_structure_view_width

Default template to use when user
creates a new document.

-default_template

-YESdisplay_place_marker_for_float

-C:\Users\{username}\Documentsdocument_path

Draw a dotted line around table cells
when the border value is set to 0.

truedraw_grid_on_borderless_tables

Customization Guide82

Configuration variables

DescriptionDefault valueVariable name

Image displayed for an empty element
in Tags On and Normal views.

empty.gifempty_element_image

-NOenable_advanced_debugging

Allow a user to edit a document as well
formed.

YESenable_edit_as_wellformed

When set to NO, disables the
Customize option in the toolbars
context menu (right-click menu).

YESenable_toolbar_customization

Entity file extension..ententity_ext

Font used for entity icons in Tags On
view.

Arialentity_font_name

Size of the font used for entity icons in
Tags On view.

8entity_font_size

Background colour used for entity icons
in Tags On view.

whiteentity_icon_background_color

Colour used for entity icons in Tags On
view.

slate greyentity_icon_color

Path of entity files.${SQDIR}\Rules\entitiesentity_path

-NOevaluation_version

Entity replacement text in Tags On
view.

NOexpand_entities_in_tags_on_view_too

When set to NO the doctype
declaration is omitted from the saved

YESexport_doc_type_dec

file. Files that contain a doctype
declaration when opened have the
doctype declaration stripped from them.

The control character hex 0A (line
feed) is appended to the end of lines

NOexport_eol

so that each line contains 0A 0D at
the end.Without this variable set to NO
the end of a line is marked only with
0D (carriage return).

-NOexport_sgml_dec

Path to the extid.map file.${SQDIR}/extid.mapextid_map

Set the Backwards Search checkbox
in the Find and Replace dialog.

NOfind_backward

Set the Match Case checkbox in the
Find and Replace dialog.

NOfind_case_sensitive

Set the Use Pattern Matching checkbox
in the Find and Replace dialog.

NOfind_patterns

Set the Whole Words checkbox in the
Find and Replace dialog.

NOfind_whole_words

Set the Wrap checkbox in the Find and
Replace dialog.

YESfind_wrap

-YESfix_image_urls_on_export

83© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Configuration variables

DescriptionDefault valueVariable name

true (default): XMetaL Author changes
the SYSTEM URL (path to the DTD) in

YESfix_sysid_url_on_export

the Doctype Declaration to a path
relative to the location of the XML file.
false: The path is left unaltered (i.e.,
the value it was when the XML file was
first loaded)

-YESfix_transparent_color

-YESfix_URLs_on_remotesave

-NOformat_tags

-${SQDIR}/hmfx/hmfx.htmfx_chooser_root_page

--fx_chooser_viewer

-${SQDIR}\xmetal.chmhelp_context_file

-${SQDIR}\xmetal.chmhelp_file

-http://www.xmetal.comhelp_home_page

-${SQDIR}\viewhlp.chmhelp_on_help_file

-Defaulthighlight_mode

--html_browser

--html_browser_path

External browser (1st on Preview
toolbar

-html_browser0

External browser (2nd on Preview
toolbar

-html_browser1

External browser (3rd on Preview
toolbar

-html_browser2

External browser (4th on Preview
toolbar

-html_browser3

External browser-html_browser4

External browser-html_browser5

External browser-html_browser6

External browser-html_browser7

External browser-html_browser8

External browser-html_browser9

-htm;shtm;html;shtml;mvhtml_file_extensions

Display icons in the menus on the
Menu bar.

YESicons_in_menus

-.gifimage_ext

Image file types listed in the Insert
Image dialog box.

gif;jpg;png;bmp;tifimage_exts

Defaults to document_path but at app-
exit time, is set to last place an image
was chosen from.

C:\Users\{username}\Documentsimage_path

--image_viewer

Customization Guide84

Configuration variables

DescriptionDefault valueVariable name

--image_viewer_path

-BMP;GIF;EPS;PCX;TIF;WMF;WPG;
SDW;CGM;TGA;JPG;PNG;PIC

img_ext

-.htmimport_ext

-.sgmimport_ext

Defaults to document_path but at app-
exit time, it is set to the last place from
where an image was chosen.

-import_path

-YESinclude_required_elements

--internet_session_agent

-NOinternet_session_cache

-1000internet_session_dialog_delay

-Accept: */*internet_session_http_request_header

--internet_session_proxy

-0internet_session_proxy_access

--internet_session_proxy_bypass

-.mapISMAP_ext

Make element collapsing and
expanding which you do in either the

NOkeep_sv_mv_in_sync_by_default

Structure View or the Main View, get
automatically done in the other view.

Path and filename of the log file
XMetaL will create if the ‘make_log_file’
variable is set to YES.

${SQDIR}\xm_lookup.loglog_file

-.mcrmacro_ext

--macro_file

Path to macros folder.${SQDIR}\Macrosmacro_path

Create a second copy of every file
saved using the extension set in the
‘backup_ext’ variable.

NOmake_backup_file

-NOmake_catalog_dump_file

If set to YES, XMetaL creates a log file
of all files it opens and searches when
opening or creating a new document.

NOmake_log_file

When this number of changes to a
document is made, XMetaL
automatically saves the file.

65000max_changes_between_saves

When this number of minutes passes,
XMetaL automatically saves the file.

1000max_time_between_saves

Can show tags without element names
inside them.

falseminimize_tag_icons

-GIF;JPG;PNGnet_img_ext

See topic Giving priority to system or
public identifiers.

YESOASIS_override

85© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Configuration variables

DescriptionDefault valueVariable name

-8000ole_server_busy_timeout

-NOopen_as_wellformed

XMetaL - Central. Do not change.-organization

--print_left_footer

--print_left_header

--print_middle_footer

--print_middle_header

--print_right_footer

--print_right_header

-1234-5678-9246product_identifier

-NOprompt_for_attrs

--publish_change_from

--publish_change_to

Uses 8.3 paths.full pathremote_edit_temp_dir

-YESrestore_last_open_docs

When set to YES, XMetaL never
validates a document.

NOrules_checking_always_off

When set to true, turns rules checking
option off.

-rules_checking_always_off_
option_shown

-.rlsrules_ext

-XMetaL.rlxrules_file

The directory XMetaL should look in to
find rules files (.rld,.rlx, .rls),
.dtd files and schema files (.xsd).

${SQDIR}\Rulesrules_path

The directory that is shown when
saving a document for the first time.

Defaults to document_path but at
app-exit time, it is set to the last

C:\Users\{username}\Documentssave_path

place where a document was
saved.

Show comments in Tags On view.YESshow_comments

-YESshow_fixed_attrs_in_tag_tips

Hide the HEAD element in HTML.YESshow_head_element

-YESshow_ignored_marked_sections

-NOshow_inline_images

-NOshow_rules_check_off_dialog

Show the Structure View when a
document is opened.

YESshow_structure_view_by_default

-YESshow_tag_tips

-NOshow_urls

Customization Guide86

Configuration variables

DescriptionDefault valueVariable name

Not used.008000source_color_anchor_tag

-FFFFFFsource_color_background

-000080source_color_cdata

-800080source_color_comment

-FF0080source_color_decl

-000080source_color_end_tag

-808080source_color_entity_ref

Default text color in Plain Text view.000000source_color_foreground

Color of attribute values.FF0000source_color_quote

-808080source_color_script

-008000source_color_script_comment

-0000FFsource_color_script_keyword

-408080source_color_script_quote

-0000FFsource_color_start_tag

-000080source_color_sub_decl

-8000FFsource_color_table_tag

-YESsource_view_auto_indent

Enable syntax coloring on markup
(Plain Text view).

YESsource_view_color_html

Enable syntax coloring on scripts (Plain
Text view).

YESsource_view_color_script

-NOsource_view_dont_wrap_in_tags

-NOsource_view_expand_tabs_on_save

-${SQDIR}\Keywords.inisource_view_keywords_path

Display line numbering in source view.YESsource_view_line_numbering

Width of a tab character (Plain Text
view).

3source_view_tab_size

Display tabs in source view.YESsource_view_use_tabs

Wrap lines in source view. 0 = Off; 1 =
Break within words; 2 = Break between
words.

0source_view_wrap

Path to the XMetaL INI files.C:\WINDOWS\xmetal.ini;C:\Program Files
(x86)\XMetaL 12.0\Author\xmetal.ini

SQCONFIG

Path to the XMetaL executable
xmetal.exe. This value is used by

C:\Program Files (x86)\XMetaL 12.0\Author
OR C:\Program Files (x86)\XMetaL
12.0\XMAX

SQDIR

other INI variables in the form
${SQDIR}.

-.cssstyles_ext

-${SQDIR}\Displaystyles_path

Typeface used for tag icons.Arialtag_font_name

Font size used for tag icons.8tag_font_size

87© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Configuration variables

DescriptionDefault valueVariable name

Background color for tag icons.whitetag_icon_background_color

Text and outline color for tag icons.slate greytag_icon_color

-NOtags_on_graphical_tables

Defaults to rules_path${SQDIR}\Rulestbr_path

Default location of templates.${SQDIR}\Templatetemplates_path

Default location of icons when toolbars
are created.

${SQDIR}\Iconstoolbar_icon_path

-GIF/noimg.gifunavailable_image

Maximum number of undo actions.1000undo_limit

Number of times XMetaL will try to
create a unique attribute value. This
affects some API methods.

1000unique_attribute_value_max_tries

-NOunlock_version

-GIF/badform.gifunsupported_image

-Web Documents
(*.htm*,*.mv,*.shtm)|*.htm*;*.mv;*.shtm|HTML

url_file_ext

Documents (*.htm,*.html)|*.htm;*.html|Miva
Documents (*.mv)|*.mv|Server Includes
(*.shtm,*.shtml)|*.shtm;*.shtml|All Files
(*.*)|*.*||

-YESurls_default_to_relative

-YESuse_extid_mapping

-NOuse_inline_IME

-NOuse_open_market

User’s first initial extracted from the
Windows logon name.

first initial of usernameuser_initials

Name used for change tracking. If no
name is specified, the default Windows
user name is used.

same value as the user's Windows logon
name

user_name

Validate a file before any action that
causes the file to be saved.

YESvalidate_before_export

Startup View. Possible values are: 0
(Plain Text), 1 (Tags On), 2 (Normal).

2view_for_open

Note that these values are different
from those used in the ‘ViewType’ API
property.

-NOwarn_before_saving

-Arialwysiwg_printer_font_name

-10wysiwg_printer_font_size

--wysiwyg_nodes_to_hide

--xml_export_blank_line_after
_end_tags_0001

--xml_export_blank_line_after
_start_tags_0001

Customization Guide88

Configuration variables

DescriptionDefault valueVariable name

--xml_export_blank_line_before
_end_tags_0001

--xml_export_blank_line_before
_start_tags_0001

-2xml_export_indent_spaces

--xml_export_indent_tags_0001

--xml_export_new_line_after
_end_tags_0001

--xml_export_new_line_after
_start_tags_0001

--xml_export_new_line_before
_end_tags_0001

--xml_export_new_line_before
_start_tags_0001

--xml_export_paragraph_child
_elms_0001

-xml;ux;entxml_file_extensions

89© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Configuration variables

Glossary

A content model in a DTD is ambiguous if an element in a document instance could
match more than one part of the content model.

ambiguous content
model

A customization at the application level. Application-level customizations apply to
all documents, regardless of the DTD or schema used.

application
customization

A value that is associated with an element but is not part of the content of the element.
Many properties are represented by attributes, for example, class or ID.

attribute

An element whose content is preceded and followed by line breaks.block element

A program that communicates with Web servers and is used for retrieving and
displaying documents from the World Wide Web or an intranet. Most browsers use
a graphical interface to provide access to text, images, audio, and video.

browser

A widely used DTD for table markup, described in the U.S. Department of Defense
SGML standard MIL-M-28001B. XMetaL Author supports a definition of the CALS
DTD developed by the OASIS consortium and described at www.oasis-open.org.

CALS table model

A way to specify document formatting that is supported by browsers. XMetaL uses
cascading style sheets to format the document pane in Normal and Tags On views.

cascading style
sheet (CSS)

A cascading style sheet generally consists of one or more rules that define element
appearance. These style sheets are said to be cascading because several style
sheets can be applied to the same document. See www.w3.org for more information.

One or more files that map external identifiers for DTDs, rules files, or entities to a
filename. Also called OASIS catalog files. For more information on catalog files, see
OASIS Technical Resolution 9401:1997.

catalog files

Character data. A type of content in which any XML or SGML markup delimiters
(such as ‘<’ and ‘&’) that appear are treated as ordinary characters. XML and SGML

CDATA

documents can contain CDATA sections; SGML documents can contain CDATA
elements.

A markup construct in XML and SGML documents, beginning with the characters
‘<![CDATA[’ and ending with ‘]]>’, inside which all content is treated as character
data.

CDATA section

Component Object Model. A language-independent interface developed by Microsoft
for combining applications under Microsoft Windows.The XMetaL scripting API uses
a COM interface.

COM interface

An expression in a DTD that defines the content of a particular element.content model

A numerical element prefix that is incremented automatically for each successive
occurrence of that element. For example, chapters in a document may be numbered
1, 2, 3, ..., etc. Counters are implemented via a cascading style sheet.

counter

An enhancement to the functionality, behavior, or appearance of XMetaL Author.
Customizations can be made at the document level or at the application level.

customization

An XML configuration file specifying a variety of element-based behaviors and
properties for an XML document type.

customization file
(CTM)

The element containing the insertion point or selection. If an entire element is
selected, the current element is the parent of that element, not the selected element
itself.

current element

90© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

http://www.oasis-open.org/cover/tr9502.html
http://www.w3.org/
http://www.oasis-open.org/html/a401.htm

Document type declaration. A declaration at the top of an XML or SGML document
that specifies which DTD applies to the document, and may contain some extra
markup declarations.

DOCTYPE
declaration

A customization that applies to all documents based on the DTD or schema used
for the customization.

document
customization

The Document Object Model (DOM) is an abstract definition of an API (application
program interface) for manipulating XML document structures. The DOM is a

Document Object
Model (DOM)

Recommendation of the World Wide Web Consortium (W3C), developed and
maintained by the W3C DOM Working group. XMetaL follows the DOM Level 1
Specification.The DOM was designed to represent XML structures, but can represent
SGML structures (such as CALS tables) if they are also found in XML.

Document Type Declaration. A set of declarations, written in a formal notation, that
defines the structure of a document.

DTD

The building blocks of XML and SGML documents. Elements are named according
to their function in the document, for example, headings, lists, and paragraphs.

element

An element that cannot have any content.empty element

A special character, a block of text or markup, or a file.entity

A reference, using a specific syntax, to an entity. When the document is displayed
in a browser or editor, the entity reference is replaced by the text or file that the entity
represents.

entity reference

A type of entity that represents another XML or SGML file.external entity

A way of identifying an external file. External identifiers can appear in a document
type declaration and in external entity declarations, where they identify the external

external identifier

file that the entity refers to. In SGML files, external identifiers can consist of a system
identifier, a public identifier, or both. In XML files, external identifiers must contain
a system identifier, which may be preceded by a public identifier.

The file, ../XMetaL/Author/extid.map, that associates external identifiers with
filenames on the system.

external identifier
map file

An element that is inserted following the occurrence of a specific element.
Followed-by elements are configured in XMetaL Developer as part of the
customization (.ctm) file.

followed-by element

A data-entry interface usually associated with specific elements in an XMetaL
document. Forms are designed in the XMetaL Forms Toolkit (XFT) either as dialog

form

boxes that are launched from an XMetaL macro, or as content that appears as part
of an element.

These can be text entities, which represent a piece of text or a single character;
external entities, which represent another XML file; and graphic entities, which
represent a graphic, audio, or video, etc. file.

general entity

Text that is not part of the document content, but is generated by a display program
and displayed at the beginning or end of an element’s content.

generated text

A type of general entity that represents an external multimedia file, for example, a
graphic, video, or audio file.

graphic entity

Text that can be used to link to another document or another location in the same
document. The viewer can display the linked document or location by clicking the
text.

hypertext

A unique identifier. The value of an ID attribute must not be used for any other ID
attribute in the document.

ID

91© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Glossary

http://www.w3c.org/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/

An object associated with an in-place control that gives a script access to the control’s
properties, methods, and events.

IDispatch object

A reference to an ID. Unlike ID attributes, IDREF attributes do not have to be unique:
more than one IDREF can refer to the same ID.

IDREF

An element that does not have a line break before or after its contents.inline element

An ActiveX control that is embedded in the Normal and Tags On document panes
in XMetaL Author or XMetaL XMAX, and communicates with XMetaL Author or

in-place control

XMetaL XMAX so that changes in the control can modify the document, and vice
versa.

An optional part of the document type declaration that may contain markup
declarations.

internal subset

International Organization for Standardization.ISO

The character set for special or accented characters that is widely used in HTML
documents. This character set is also called ISO Latin 1. It includes characters
required for most western European languages.

ISO 8859-1 character
set

A sequence of XMetaL actions or script commands that can be run as a unit via a
keyboard shortcut, a toolbar button, or a menu item. Macros can be recorded from

macro

within XMetaL Author, or created by inserting scripting code into a macro file using
XMetaL Developer.

A markup construct in SGML documents that designates the content for special
processing. The parameters of the marked section specify the type of processing.

marked section

The most common uses for marked sections are to cause a portion of the document
to be ignored at certain times, and to surround SGML markup constructs that you
want to be treated as text, not markup.

Keywords that determine how to process a marked section in an SGML document.
The available keywords are INCLUDE (process the section normally); IGNORE (do

marked section
parameter

not process the section); CDATA (treat elements and entity references in the content
as text, not markup); RCDATA (treat elements in the content as text, not markup);
and TEMP (the section is temporary).

Special instructions or indicators in a document that specify how the enclosed content
is to be processed by an application. Element tags are an example of markup. In

markup

an XML or SGML document, the element tags specify the role of the content (heading,
title, paragraph, etc.).

A macro file. An MCR file is an XML-based customization file containing XMetaL
macros, or scripts. For document-level customizations, the MCR filename is named

MCR file

according to the DTD or schema; for application-level customizations, the MCR
filename is xmetal.mcr.

A dialog box that remains active until it is closed. Once it is open, you must complete
your task and close it before you can return to the main window and continue working.

modal dialog box

A dialog box that can remain open while you are working in the main program window.modeless dialog box

A feature of XML that permits documents to contain identically-named elements
defined in more than one DTD or schema.

namespace

A declaration in a DTD that specifies a file format that can be used for files
represented by graphic entities. For example, if GIF files are to be used, a notation
declaring the GIF format must be present in the DTD.

notation

Organization for the Advancement of Structured Information Standards, a consortium
dedicated to promoting structured information standards such as XML and SGML.
For more information, see www.oasis-open.org.

OASIS

Customization Guide92

Glossary

http://www.oasis-open.org

An entity that represents one or more marked section parameter keywords.parameter entity

Parsed character data. The most common form of text content in XML and SGML
documents. In PCDATA text, any markup, such as element start and end tags and
entity references, is interpreted with its normal meanings.

PCDATA

Saving a file that contains markup so that it is easily readable, for example, by
indenting lists to reflect a nested structure.

pretty-printing

Elements that are formatted to look like the HTML PRE element; that is, with all
whitespace preserved exactly as it was entered.

PRE-like elements

An instruction that is not interpreted as part of the document’s content, but rather
interpreted by an application that is processing the file.

processing
instruction

A system-independent string that is used to represent a DTD or entity file. Part of
an external identifier.

public identifier

Replaceable character data. SGML files can have RCDATA elements and marked
sections, in which any element start- or end-tags that occur are interpreted as text,
but any entity references are interpreted in the normal way.

RCDATA

An attribute that must be present in order for the document to be valid.required attribute

An element that must be present in order for the document to be valid.required element

A file on an http or Web server.remote file

An XMetaL feature that ensures that you do not break the required structure as you
edit your document; it does this by allowing you to insert only valid elements. Rules

rules checking

checking is less stringent than validation in that it checks that no errors have been
made, but does not check that the markup is complete.

An XMetaL-specific alternative to a DTD. All of the files comprising a DTD are
compiled into a single binary rules file. Rules files can be issued to XMetaL users
who are not authorized to modify the DTD.

rules file

An XML standard for defining the structure, content, and semantics of an XML
document.

schema

A type of text entity whose content is specific to a particular processing application
or platform. These entities are often used to represent platform-specific characters,

SDATA entity

and codes for formatting systems (such as troff or TEX). SDATA entities are permitted
only in SGML files.

In a cascading style sheet, a selector is an expression, representing one or more
elements, that a style property can be associated with. A selector can represent an

selector

element, several elements, an element with a specific ancestor, an element in a
particular class, etc.

A group of elements that is not marked up with one of the supported table models
(CALS and HTML) that can be formatted as a table.

semantic tables

Standard General Markup Language. A standard for describing the structure of a
document using markup. SGML is described by the ISO 8879 standard 1986). HTML
and XML are applications of SGML.

SGML

An SGML declaration is a file associated with a DTD that contains information about
the character set, markup delimiters, quantity settings, and special markup features
that are available in documents that use that DTD.

SGML declaration

The variable that is used to represent the folder in which XMetaL is installed.SQDIR

93© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Glossary

An XML document that an application can parse without referring to an external
DTD. A standalone document may still require a DTD in some situations, for example,
if it is being edited.

standalone
document

Part of an external identifier. A system identifier is generally the filename of the file
(for example, a DTD or entity set) that the external identifier refers to. In XML

system identifier

documents, system identifiers are required in external identifiers, and are interpreted
as URLs.

An element in an XML or SGML file begins with a start-tag (for example, <PRE>)
and ends with an end tag (for example, </PRE>).

tags

Toolbar file.Toolbar and menu customizations are saved in TBR files.When XMetaL
Author loads a TBR file, it looks for the file in the user’s personal settings folder first.

TBR

If it does not find the file, it then looks for the file in the folder specified by the
tbr_path variable in the XMetaL configuration file. By default, this variable is set
to the rules_path value. If it does not find the TBR file in either of these places,
it looks for it in the folder that contains the DTD or schema, if this is a folder other
than the Rules folder.

A type of general entity that stands for one or more text characters.text entity

A standard for electronically encoding the characters of many of the scripts used to
write the world’s languages, as well as special symbols such as mathematical

Unicode

symbols. Unicode is the character encoding specified by XML. For more information,
see www.unicode.org.

Uniform Resource Locator. A URL is the address of a file, written in a format that
can be interpreted by a Web server.

URL

An XML or SGML document is valid if it is well-formed and if it conforms to the rules
in the DTD or XML schema.

valid document

Visual Basic Script. A scripting language implemented by Microsoft Visual Basic.
VBScript is one of the languages that can be used to configure XMetaL with the
COM interface .

VBScript

World Wide Web Consortium, an industry association for the development of World
Wide Web technologies. For more information, see www.w3.org.

W3C

World Wide Web Distributed Authoring and Versioning, the Internet Engineering
Task Force standard for collaborative authoring on the Web. WebDAV is a set of

WebDAV

extensions to the Hypertext Transfer Protocol (HTTP) and Secure Hypertext Transfer
Protocol (HTTPS) that facilitates collaborative editing and file management between
users located remotely from each other on the Internet.

An XML document that is structurally correct according to the XML standard. There
are several aspects to well-formedness, the most important of which are: the

well-formed
document

document must have only one top-level element, and all elements must be properly
nested.

One or more space, tab, carriage return, or line feed characters, in any combination.whitespace

XMetaL Application Customization file. A compiled, deployable customization file.
It contains all the files created or copied during the build process, and is recognized
by XMetaL Author and XMetaL XMAX as a customization.

XAC

XMetaL Forms Toolkit. A set of form creation and form layout tools that developers
can use to design and implement embedded forms and modal dialog boxes.

XFT

Extensible Markup Language. An easy-to-implement subset of SGML, originally
designed for displaying content over the Internet. XML is an initiative of the W3C.
For more information, see www.w3.org/XML.

XML

Customization Guide94

Glossary

http://www.unicode.org/
http://www.w3.org/
http://www.w3.org/XML/

A processing instruction that appears at the start of an XML document. This
processing instruction indicates the XML version being used, and may specify the
character encoding and whether the document needs an external DTD.

XML declaration

Extensible Stylesheet Language: Transformations. A language for describing how
to transform an XML document into another XML document.

XSLT

95© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Glossary

Index

.rls/.rlx/.rld files 38
@import statement 64
#GLOBAL element properties 16

A

adding
buttons 8
customization items 10
existing macros 33
existing, functions 33
items 10
menu items 8
new functions 31
new macros 31

ambiguous content model 38
arguments

command 18
asset catalog file 73
Asset catalog file 76
asset display file 73
Asset display file 75
Asset Manager 73

Asset catalog file 76
Asset display file 75
configuration files 73
creating new asset types 75
fxindex.htm file 75
fxitems.xml file 76
fxmaster.xml file 77
master catalog file 77
methods 73
remote assets 78
script variables 73
text and text file assets 77

associating
XFT forms, with elements 12

attribute declarations (schema support) 37
attribute description file 37, 49
attribute group definition (schema support) 37
attributes

case 47
description file 37, 49
modifying 38
selectors 61

AttributeUses (schema support) 37
autonumbering 69

B

backup_ext
xmetal50.ini 81

building
configuring the build environment 18
customization 18

bulleted lists 15

buttons
adding 8

C

cascading style sheet editor 60
cascading style sheets 60

:after pseudo-element 69
:before pseudo-element 69
browser support 60
counters 69
examples 72
extensions 65
imported style sheets 60
introduction 60
left indent property 65
location 60
miscellaneous properties 65
prefix options 65
priority 61
rule ordering 61
standards 60
Structure View options 65
style properties 64
supported properties 66
table formatting 71

case, names 47
catalog

OASIS 41, 42
catalog file entries

resolving 42
CATALOG keyword 44
catalog, OASIS 45

CATALOG keyword 44
DELEGATE keyword 44
finding 44
keyword precedence 41
keyword summary 41
locations 44
OVERRIDE keyword 44

catalogs
support in schemas 43

change list 12
CLASS attribute 72
command arguments 18
commands

menu 8
compiling a DTD 38
complex type definitions (schema support) 37
configuration file 80
configuring

structure view CSS 60
configuring the build environment 18
content types 38
converting

doc to xml 35

96© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

counters
counter-increment 69
counter-reset 69
initializing 69
multi-level 69
styles 69

creating
DTD, overview 6
forms 51, 53
rules 8
schema, overview 8
solution 7
XML template 8
XSD, overview 8

CSS
custom selectors 64
debugging 19
structure view 60
supported properties 66
table formatting 71
validation 60

CTM
debugging 19

Custom tabs (in Resource Manager) 73
customization

adding an item to 10
building 18
debugging 19
modifying 10
new 7
opening items in 10
removing an item from 10
saving 10

customization components 8
customization file element properties 11
customization support 22
Customizations

advanced 51
customizing

overview 6
with xft 51

customizing XMetaL
adding new toolbar icons 80
alias property 11
change list 12
customizing XMetaL

designating elements as paragraphs 15
designating toggling elements 15

description property 11
element properties 11
elements

assigning to buttons 15
toggling 15

followed-by element 13
images

defining in Customizations dialog box 15
image elements 15

introduction 6
macros

creating 15
paragraphs

defining in Customizations dialog box 15

customizing XMetaL (continued)
text layout 15
toggling elements 15
toolbars

customizing 15

D

data source
form 56
object 56

data source object
XFT 56

database import
required components 34

debugging
CSS and CTM 19

declaration subset 40
default content 11
default font (plain text)

xmetal50.ini 81
definition lists 15
DELEGATE keyword 44
dialog boxes

C++ 22
editor 51

disable text layout
in global element properties 16

display properties
supported CSS selectors and elements 66

DLLs 22
DOCTYPE

internal subset 40
document type declaration 39
document type definition

viewing 37
document type name 39
DTD

creating 37
creating, overview 8
language support 47
modifying 37
viewer 37

dtd hierarchy
mapping 54

DTDs 37
compiling 38
creating 37
internal 40

E

editing
functions 32
macros 31, 32

editing properties
functions 31
macros 31

element declarations (schema support) 37
element properties 11
elements

case 47

97© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Index

elements (continued)
modifying 38
selectors 61

encodings 10
Enter key 13
entities

case 47
events 50
examples

XFT forms 59
Excel spreadsheets

importing 34
external identifier map 45, 46
extid.map file 45, 46

F

filename
for XAC 18
output 18
XAC file 18

files
DTDs 37
rules files 37
SGML declaration 47

filetypes (UseAs) 9
followed-by elements 13
form editor 51
Form Layout Editor 51
forms 8

content mapping model 50
creating 51, 53
design tips 51
filename extension 50
forms

interfaces 50
introduction 50
samples 59
script events 50
testing 50

forms editor
dialog box editor 51

functions
adding existing 33
editing 32
editing properties 31
importing 33
new, adding 31
testing 34

fxindex.htm (asset display file) 73
fxitems.xml (asset catalog file) 73
fxmaster.xml (master asset catalog file) 73

G

generated text
counters 69

getting started 6
Global element

properties 16
Global element properties 16
global settings 80

H

html 35
preview 35
print 35

html printing
customize 35

I

icons, toolbar 80
icons.ini 80
identifier

external 39
public 39
system 39

importing
databases 34
Excel spreadsheets 34
functions 33
macros 33
scripts 33

In-Parent entries 17
customization 17

ini variables
complete list 81

internal DTD 40
internal subset 40
introduction 6

L

language support 47
limitations

schema 37
wildcards 37

list
ini variables, all 81

list elements 15
lists

defining in Customizations dialog box 15
log file

xmetal50.ini 81

M

macros
editing 31, 32
editing properties 31
existing, adding 33
importing 33
language 81
new, adding 31
testing 34

mapping
dtd hierarchy 54

master asset catalog file 73
MDAC 34
menu items

adding 8

Customization Guide98

Index

menus
working with 8

meta-inf.xml 18
mkrls 38
model group definitions (schema support) 37
model groups (schema support) 37
modifying

attributes 38
customization 10
elements 38

MS Word 35
multi-language

support 47

N

NAMECASE (SGML declaration) 47
names 47
namespace extensions 73
namespace-aware selectors 64
namespaces 16
new

customization 7
next element 13
noscrollbars.txt 73
notation declarations (schema support) 37
numbered lists 15

O

OASIS catalog 41
object

data source 56
Object Bar 51
object events

XFT 50
options

Plain Text 15
output

filename, changing 18
OVERRIDE keyword 44
overview

customizing 6

P

paragraph order
in global element properties 16

Particles (schema support) 37
pdf 35

preview 35
print 35

personal settings 80
planning

workflow 7
post-build

properties 18
pretty printing 15
printing

html 35

processing instructions
styling using CSS 63

project
properties 18

project properties 18
project wizard 7
projects

types of 7
properties

of a project 18
pseudo-classes 61
pseudo-elements 61
public identifier 39
PUBLIC keyword 39

Q

quantities, SGML 47

R

removing
customization items 10
items 10

replacement text 14
Resource Manager 73

namespace extensions 73
rules checking 81
rules files 37

creating 38
Rules files 38
Rules folder 38
Rules Maker 38

S

samples
XFT forms 59

saving
customization 10
encodings 10
Plain Text layout options 15

schema
creating 37
creating, overview 8
language support 47
limitations 37
modifying 37
viewer 37

schemas
catalog support 43
limitations 37
rixml support 37
support for 37

script
editor 31

scripts
importing 33

selectors
attributes 61
elements 61

99© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Index

selectors (continued)
namespace-aware 64
pseudo-classes 61
pseudo-elements 61
XMetaL-specific 63

semantic tables 71
settings

global 80
personal 80

SGML declaration 37
simple type definitions (schema support) 37
solution

creating 7
solution explorer

working with 10
structure view

CSS, configuring 60
style properties 64
style sheets 60
styles

supported properties 66
support

languages 47
support for schemas 37
system identifier 39
SYSTEM keyword 39

T

tables
formatting elements as 71

TBR
purpose 8

template
creating 8

testing
functions 34
macros 34

text layout 15
toolbars

enable_toolbar_customization 81
working with 8

transformations 35
html 35
pdf 35

U

UseAs types 9
user name

xmetal50.ini 81

V

validation
CSS 60

validation disabled
xmetal50.ini 81

viewing
DTDs or schemas 37

viewing and saving
html 35

virtual element 17
customization 17

Visual C++ 22
Visual Studio .NET Solution Explorer 10

W

W3C schema
viewing 37

well-formed editing
disabling 81

wildcards
schema 37

Windows Scripting Engine 34
Windows shell namespace extensions 73
wizard

Import Script Wizard 33
project 7

workflow
planning 7

X

XAC
purpose 18

XAC file
filename, specifying 18

XFT 51
design tips 51
Form Layout Editor 51
forms toolkit 51
Object Bar 51
object events 50

XFT forms
Advanced Display Type property 12
associating with elements 12
Display As property 12
examples 59
in-place controls

printing 12
printing

in-place controls 12
samples 59
Use Bitmap Printing 12

xm-replace_text processing instruction 14
XMAX 20

customization 20
XMAX customization

debugging 20
XMetaL Forms Toolkit 51
XMetaL Rules Maker 38
XMetaL-specific selectors 63
xmetal.ini

complete list of ini variables 81
configuration 81
configuration variables 81
variables 81

xmetal50.ini 80
assets_path 81
backup_ext 81

Customization Guide100

Index

xmetal50.ini (continued)
default font (plain text) 81
default_structure_view_width 81
enable_open_as_wellformed 81
enable_toolbar_customization 81
entity extension 81
expand_entities_in_tags_on_view_too 81
extid_map 45
log file 81
log_file 81
make_log_file 81
OASIS_override 44
rules_checking_always_off 81
tbr_path 81
use_extid_mapping 45
user name 81

xmetal50.ini (continued)
validate_before_export 81
validation disabled 81

XML
xml:lang 47

XML template
creating 8

XMmkrules 38
XSD

creating 37
creating, overview 8
modifying 37
viewer 37

XSL 60
XSLT 60

101© 2024 JustSystems Canada Inc.XMetaL Developer 19.0

Index

	Contents
	Introduction
	Creating customizations
	Before you begin
	Components
	File properties

	Visual Studio .NET Solution Explorer
	Element properties
	General
	Change list
	Display As
	Associate an element with an in-place control

	Followed by
	On Insert
	Text layout
	Treat As
	Global properties
	Virtual element
	In-Parent element

	Building a customization
	Configuring the build environment
	Debugging a customization
	Debugging and testing an XMAX customization

	Customizing using C++
	Explicit application-level customization support (without using XAC)
	External event handling in XMetaL

	Scripts
	Script editor
	Creating scripts
	Create a script

	Importing scripts
	Import a script
	Import scripts from an MCR file

	Testing scripts
	Importing data
	Converting Microsoft Word documents
	PDF and HTML previewing and printing

	DTDs and schemas
	Creating a DTD
	Modifying your DTD
	Rules files
	Document type declarations
	Internal subset

	Mapping identifiers
	Catalog files
	Resolving catalog file entries
	Catalog support for schemas
	Finding catalog files
	Giving priority to system or public identifiers
	External identifier map file
	Creating an external identifier map file

	Language support
	SGML declaration
	Attribute description files

	Forms
	XMetaL Forms Toolkit
	Create a form
	Binding a form to XML content
	External data
	Connect to an external data source

	Associate a form with a customization object
	Executing a form as a modal dialog in XMetaL
	Sample forms

	Editor display styles
	CSS editor
	Creating selectors
	XMetaL-specific selectors
	Create a selector
	Custom selectors

	Setting style properties
	Extensions properties

	View support for properties and selectors
	Using counters and autonumbering
	Formatting elements as tables
	Example style rules

	Resource Manager
	Configuring the Asset Manager
	Creating asset types
	Asset display file
	Asset catalog file
	Text file and text block assets
	Master asset catalog file

	Remote assets
	Set up a remote assets folder

	Configuring XMetaL
	Adding new toolbar icons
	Frequently used configuration variables
	Configuration variables

	Glossary
	Index

